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Abstract 

New crystalline materials were investigated for applications in frequency conversion 

of near-infrared wavelengths and as gain media for tunable mid-infrared solid-state 

lasers. GaCaO(BO& (GdCOB), YCaO(B03)3 (YCOB), LaCa40@0,)3 (LaCOB), and 

C&nsYo.7&a0(B03)3 were characterized for frequency conversion of 1 pm lasers. 

For type I doubling at 1064 nm, LaCOB, GdCOB, and YCOB were found to have 

effective coupling coefficients (d& of 0.52 k 0.05, 0.78 f 0.06, and 1.12 k 0.07 pmN, 

respectively. LaCOB was measured to have angular and thermal sensitivities of 1224 & 

184 (cm-rad)-' and 4.10 (cm-'C)-', respectively. The effective coupling coefficient for 

type II noncritically phasematched (NCPM) doubling at 1064 nm in 

G&.275Yo.7~C~O(B03)3 was measured to be 0.37 & 0.04 pmN. We predict LaCOB to 

have a type I NCPM fundamental wavelength of 1042 k 1.5 nm. Due to its low angular 

and thermal sensitivities for doubling near 1047 nm, LaCOB has potential for frequency 

doubling of high-average power Nd:LiYF4 and Yb:Srs(P04)3F lasers. LaCOB, GdCOB, 

and YCOB were also investigated for optical parametric oscillator applications and we 

determined that they may have potential in a Tksapphire pumped oscillator. 

0 

The effective linear electro-optic coefficients (Teff) were measured along dielectric 

directions in YCOB and a maximum r,R of 10.8 pmN was found. For a crystal with a 

.. 
11 



5:1 aspect ratio, the corresponding half-wave voltage at 1064 nm would be 19.6 kV. 

Therefore a Pockels cell composed of two YCOB crystals with 5:l aspect ratios would 

have a required half-wave voltage <IO kV. 

Moderate coupling coefficients (3 x K&Po4), low thermal sensitivities, ease of 

growth to large sizes, non-hygroscopicity, and favorable polishing and coating 

characteristics make LaCOB, GdCOB, and YCOB attractive for frequency conversion of 

high-average power near-infrared lasers. 

Absorption and emission cross-sections of cm2 were measured for Fe2+:2hSe in 

the 4 pm region at temperatures below 220 K. Luminescence lifetimes were found that 

ranged from 5 - 110 p below 220 K. Tunable lasing action was demonstrated for the 

first time in Fe2+:ZnSe with a tuning range from 3.98 p (20 K) to 4.54 pm (180 K). 

The Fe2+:ZnSe laser had thresholds 550 pJ and slope efficiencies 110% with 0.6% output 

coupling. 
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Chapter 1 

Introduction 

1.1 General motivation 

The laser, invented in 1961 [1,2], is such an extremely useful tool that it now 

pervades our life. For example, lasers can be found in the supermarket, at the dentist's 

office, in construction tools such as levels and theodolites, in compact disk players, and 

in the research and development laboratory. Lasers play a vital role in scientific research 

since they provide a bright, coherent, single color source of light [l-51. As scientific 

research progresses new lasers are needed to meet the evolving needs. The Lawrence 

Livermore National Laboratory (LLNL,) has programs that involve the development and 

deployment of many different kinds of new and novel laser systems for research 

applications [6- 161. 

One example of the work being conducted at LLNL is the development of near- 

infrared (1 pm) lasers for fusion energy research [6-111 and material p m s i n g .  Novel 

near-infrared laser systems such as these utilize nonlinear crystals for frequency 

conversion (since many applications require the second or third harmonic of the 

fundamental wavelength) and for polarization antrol (Pockels cells) [ 17-20]. As state- 

of-the-art laser systems are engineered, unique requirements are placed on the nonlinear 

crystals used for frequency conversion that are not easily satisfied by commercially 

available nonlinear crystals. Therefore as frequency conversion requirements extend to 

unprecedented regimes, new nonlinear crystals need to be identified and developed. 

Another example of new lasers being developed at LLNL is tunable mid-infrared 

solid-state lasers for use in remote sensing and laser radar [12-161. Tunable mid-infrared 
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laser materials are scarce which makes the development of these systems 

In order to satisfy these demands for tunable mid-infrared solid-state lasers, 

new mid-infrared laser crystals need to be discovered. 

1.2 Considerations for new nonlinear materials 

In general, nonlinear optical crystals need to satisfy a basic set of materials' 

requirements in order to be attractive for frequency conversion applications. In all cases, 

insensitivity to moisture is highly desirable. A material that is insensitive to moisture can 

be used in ambient conditions without any special handling or packaging requirements. 

The commercially available nonlinear crystals that are commonly used for frequency 

conversion and polarization control in 1 p.m lasers are KH2P04 (KDP), -PO4 (KD*P), 

LiB305 (IBO), BaB2O.4 (BBO), and KTiOPO4 (KTP). Among these nonlinear crystals, 

KD2P0.4 (KD*P) and to a lesser extent LiB305 (LBO) and BaE3204 (BBO) exhibit 

sensitivity to moisture. Further desired properties for a nonlinear crystal would be a large 

nonlinear coupling coefficient, low thermal and angular sensitivities, and a high damage 

threshold. 

As solid-state lasers are built that have larger apertures (-10 cm2) and produce higher 

average powers (-10 kw) [6,9,11], there is increased need for nonlinear optical crystals 

which can be grown to large sizes. Of the commercially available crystals, only KDP and 

KD*P can be grown to large sizes (15 cm3) and each of these has certain materials' 

"issues" that make them less than ideal for large aperture, high-average power 

applications. The first part of this study will focus on identifying attractive new 

nonlinear crystals for frequency conversion of near-infrared lasers that have the potential 

to be grown to large sizes. 
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1.2.1 COB famii'y of nonlinear crystalk 

The COB family of crystals (GdCqO(B03)3 (Gd,COB), YCqO(BO3)3 (YCOB), 

G&.nsYo.7&a40(B03)3 (Gd,YCOB), etc.) has recently been introduced [21-231 as a 

promising new class of nonlinear crystals, capable of frequency conversion of near 

infrared wavelengths. All of the crystals in the COB family are monoclinic and belong to 

the m point symmetry class. The crystal structure for GdCOB is shown in Fig. 1.1. The 

COB crystals possess the basic properties that make them desirable as optical materials. 

They are insensitive to moisture, have surface damage thresholds of at least 30 J/cm2 

1241, have high transparency from -200 - 2200 nm, and are easy to polish and optically 

coat. They can also be easily grown to large sizes. Typical boules grown using the 

Czochralski pulling method [25] are approximately 5 cm in diameter by 15'cm in length. 

These crystals have been previously investigated at h N L  as a potential replacement for 

LBO and KTP in intracavity frequency doubling applications. They have also found 

applications in tripling of Nd:YAG lasers (22,231. 

Gadolinium 

Boron 

Calcium 
Oxygen 

Figure 1.1. Crystal structure for GdCOB [23]. 
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In the first part of this dissertation (Chapters 2 - 5) ,  we will experimentally 

characterize the nonlinear optical properties of GdCOB, YCOB, Gd,YCOB, and the 

newest member to this family LaCQO(B03)3 (LaCOB) relevant to frequency conversion 

of 1 pm lasers. The values reported by other groups for the coupling coefficients for type 

I doubling at 1064 nm in GdCOB and YCOB are inconsistent (i.e. a variance of -30%) 

[26-281. Therefore, we will first conduct experiments to accurately characterize type I 

doubling at 1064 nm in the COB crystals. From the doubling experiments, we will find 

that the COB crystals possess at least one large nonlinear coupling coefficient (d32). One 

application based on this large nonlinear coupling coefficient that we will further 

investigate is their use in a non-critically phasematched optical parametric oscillator. A 

large nonlinear coupling coefficient may also indicate the existence of a correspondingly 

large linear electro-optic coefficient [ 191. Therefore, we will also conduct experiments to 

determine if indeed a correspondingly large linear electro-optic coefficient (ru) does exist 

by measuring the effective electro-optic coefficients for YCOB. 

1.3 Considerations for new tunable mid-infrared laser materials 

The wavelength(s) needed for a specific remote sensing application depends for 

instance, on the molecular species that is to be detected [ 121. Many organic molecular 

species have absorption bands that lie at wavelengths 5 1.4 pm which requires that a mid- 

infrared laser be used in the remote sensing system [12]. Typically, the laser used in a 

remote sensing system also needs to offer tunability in its emission wavelength so that 

detection techniques such as resonance scattering and differential absorption can be used 

(121. The specific remote sensing applications that we are trying to address require a 
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laser that provides widely tunable emission in the 3 - 5 pm region. In the 3 - 5 pm 

region, wide tunability is approximately 500 nm [ 131. 

Optical parametric oscillators [5] and direct solid-state lasers are two types of lasers 

that are commonly used for generating tunable laser emission in the mid-infrared. By 

direct solid-state lasers we mean lasers that produce the desired emission from an 

electronic transition in a material rather than a non-linear interaction. We would like to 

use direct solid-state lasers for these applications rather than an optical parametric 

oscillator (OPO) since direct solid-state lasers are simpler, more compact optical systems 

to work with. 

There are very few direct solid-state laser materials that have emission wavelengths 

greater than approximately 2 pm and that also offer significant tunability. As shown in 

Fig. 1.2, there are at present no commercially available widely tunable solid-state laser 

materials that emit past approximately 2.8 p. The most recent member of the tunable 

materials shown in Fig. 1.2 is C?+:ZnSe. C?+:ZnSe was discovered to be a widely 

- Ti3+:A1203 - C?+:BeAI2O4 - C?:LiSrAlF6 - Cr4+:Mg2Si0, 

Trn'+:YAG - 
C02+:MgF2 

Crz+:ZnSe - 
I 1  I I 1  I I I I I I I 
I I  I I I I 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 
Wavelength (p) 

Figure 1.2. Wavelength range of commercially available widely tunable solid-state lasers 
PI .  
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tunable laser material in the 2 - 3 pm range by Deloach et al. at LLNL in 1996 129,301. 

Though the absorption and luminescence properties of various transition metal-doped 

zinc chalcogenides (i.e. Cr2+:ZnSe, Fe2+:ZnSe, Ni2+:ZnSe, Co2+:ZnSe, Cr2+:ZnS, 

Fe2+:ZnS, C?:ZnTe, Co2+:ZnTe, etc.) have been much discussed in the literature over 

the past 35 years, no one had investigated their potential as laser materials until the work 

by DeLoach et al. in 1996 [29]. DeLoach et al. [29] examined crystals of ZnSe, ZnS, and 

ZnTe individually doped with C?', Co2+, Ni2+, and Fe2+. They reported that Fe2+:ZnSe 

had a broad absorption band centered at -2900 nm at room temperature but they did not 

observe any luminescence. In 1967, Haanstra reported [31 J that at a sample temperature 

of approximately 18 K, Fe2+:ZnSe had an absorption band centered at 3200 nm and an 

emission band centered at 4OOO nm with a width of approximately 600 nm. Therefore, 

Fe2+:ZnSe may have potential as a widely tunable 3 - 5 pm, albeit cryogenic, laser 

material. 

1.3.1 Fe2+-doped ZnSe crystals 

The zinc-chdcogenides (Le. ZnSe, ZnS, ZnTe, etc.) have materials' properties that 

make them good hosts for mid-infrared lasers. One very favorable property is that they 

transmit visible through far infrared (>15 pm) wavelengths. Another favorable property 

is that they allow substitutional incorporation of transition metal ions (i.e. they can be 

doped with transition metals). Transition metal-doped samples can be produced by the 

Bridgman growth method [25] or by diffusion doping [32]. Both of these methods are 

relatively inexpensive (especially diffusion doping) and can be used to quickly produce 

dopedcrystals (- 0.1 at. 96) with high optical quality. 
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ZnSe has cubic symmetry and is commonly referred to as the sphalerite structure. 

The crystal structure for ZnSe is shown in Fig. 1.3. Notice that each Zn2+ ion has four 

Figure 1.3. Crystal structure for ZnSe [33]. 

tetrahedrally coordinated Se2- ions as nearest neighbors. When transition metal 

impurities are incorporated into the ZnSe lattice, previous spectroscopic studies [34,35] 

have shown that they are primarily doubly ionized and preferentially substitute into Zn2+ 

sites. Therefore for the case of Fe2+ impurities in ZnSe (i.e. Fe2+:ZnSe), each Fez” ion is 

in a tetrahedral coordination with four Se2- ions. The crystal field due to the Se2- ions 

splits the ’D state of the Fez’ ion into a 5E and a 9 2  state [36] as shown in Fig. 1.4, with a 

9 2  

sD 
-3300 

’E v 

9 2  

sD 
-3300 

’E v 

nm 

Free-ion Tetrahedral 
state Crystal Field 

splitting 
Figure 1.4. Splitting of the 5D state for Fe2+:ZnSe. 
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splitting of approximately 3300 nm [3 I]. Dipole transitions [36] are allowed between the 

5T2 and 'E states and so it is this transition in Fe2+:ZnSe that we would like to exploit for 

widely tunable 3 - 5 pm lasing action. The second part of this dissertation (Chapters 6 

and 7) presents the results from the evaluation of Fe2+:ZnSe as a widely tunable 3 - 5 pm 

laser material. 

1.4 Overview of chapters 

The remaining chapters in this dissertation present and discuss the necessary 

concepts, experimental procedures, experimental results, and conclusions from the study 

of the nonlinear optical properties of the COB family of crystals and from the 

spectroscopic and laser studies of Fe*+:ZnSe. Chapter 2 discusses the theoretical 

nonlinear optics concepts that are necessary to understand and analyze the experiments 

conducted with the COB crystals in Chapters 3, 4, and 5. Chapter 3 discusses the 

experimental characterization of second harmonic generation in the COB crystals. In 

Chapter 4, we experimentally investigate the use of the COB crystals in a degenerate, 

noncritically phasematched optical parametric oscillator. Chapter 5 describes the 

experimental measurement of the effective linear electro-optic coefficients for YCOB. 

Chapter 6 presents and discusses the experimentally measured spectroscopic properties of 

Fe*+:ZnSe that are relevant to predicting its potential to reach laser threshold. In Chapter 

7, we describe the first laser demonstration of Fe2+:ZnSe and its performance 

characteristics. Chapter 8 summarizes the major results and conclusions determined in 

this work. 
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Chapter 2 

Theoretical linear and nonlinear optics 

2.1 Introductory comments 

GdC@(B03)3 (GdCOB), YC@(B03)3 W W ,  and c d o . 2 s , ~ 0 . 7 5 ~ ~ ~ ( B o ~ ) ~  

(Gd,YCOB) are three isostructural members of the COB family of crystals, previously 

presented in the literature [ 1-41. whose nonlinear optical properties will be characterized 

in the following three chapters. A new member to the COB family of crystals, 

LaCa40@03)3 (LaCOB), is introduced and also characterized. The concepts and 

equations developed here will be used to analyze the experimental data measured for the 

COB crystals in the next three chapters. 

This chapter will develop the basic mathematical description for several linear and 

nonlinear effects that arise from a material's first-order (x'')) and second-order a(*)) 
optical susceptibility. In section 2.2, we begin by discussing linear and nonlinear optical 

properties of materials in general. The linear optics for biaxial crystals and the 

conventions for describing the COB crystal structure then follows in section 2.3. Second 

harmonic generation is discussed for biaxial crystals in section 2.4, optical parametric 

oscillation in section 2.5, and the linear electro-optic effect in section 2.6. Section 2.7 

summarizes the chapter. All quantities and equations will be in the c.g.s. system of units 

unless otherwise noted. 

2.2 General linear and nonlinear optical properties of materials 

The electromagnetic response of a material to an applied optical field can be 

described by how the dipole moment per unit volume, or the polarization of the material 0 
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( p  ), depends on the magnitude of the applied optical field (6). In the general case, 

and E are vectors and x is a tensor, however for the purposes of this immediate 

discussion we will restrict ourselves to one dimension and treat P, E, and x as scalars. 

The nonlinear optical response of a material can be described by expressing the . 

polarization (P) as a power series [5] in the applied optical field (E) as 

The quantities x"), x'", and f 3 ) ,  are known as the linear, second-order, and third-order 

optical susceptibilities, respectively. The first term on the right-hand side of Eqn. (2.1) is 

the linear polarization, the second term is the second-order nonlinear polarization (which 

is quadratically dependent on the applied electric field), and the third term is the third- 

order nonlinear polarization. We will focus for the moment only on the second-order 

term that involves the coefficient x". 
Let's consider the second-order coupling between two scalar fields with frequencies 

and determine what frequencies are produced by their interaction. We choose 01 and 

to write the two interacting fields as infinite plane-waves given by 

and 
El = ( E l ( ~ i ) e - ~ ~ i '  + c.c.) 

El = (E2(q)e-'O; + c.c.) 

where the coefficients El(o1) and E2(%) are complex numbers and C.C. means complex 

conjugate. We write the second-order polarization as a sum over all combinations of 

positive and negative frequencies (i.e. L-OI and &a) as 



13 

(2.4) 

where the amplitudes P'2'(~) are complex numbers. Substituting Eqns. (2.2), (2.3), and 

(2.4) into the second-order term in Eqn. (2.1) and equating terms yields the following 

relations between the complex amplitudes of the different frequency components of the 

second-order polarization and the amplitudes of the electric fields. 

P(2)(201) = (Second Harmonic Generation (SHG)) 

P'2'(2m) = ~'~)Ez(m)~ (SHG) 

P'2)(o~ + or) = 2x(2)E~(w1)&(u)2) (Sum Frequency Generation (SFG)) 

P"(Q - a) = 2~(~%1(wl)&*(@) (Difference Frequency Generation (DFG)) 

P"(0) = 2~(2)(El(m1)El*(wl) + E2(oz)E2(yL)*) (Optical Rectification) 

We have assumed here that x"' is independent of frequency. We find that the interaction 

of two frequencies results in the generation of five different frequencies (including one at 

zero frequency). The interactions are identified according to standard nonlinear optics 

nomenclature [5]. The factor of two in the expressions for the sum and difference 

frequencies arise because there are two distinct fields interacting as opposed to a single 

field interacting with itself; therefore twice the contribution. 

An important fundamental property of x(2' can be deduced from the SHG term in Eqn. 

(2.5) (Pt2'(201) = x(*'El(wI)*). In a material that possesses inversion symmetry, under the 

inversion operation E-bE and P+-P. The SHG term then gives 

- P ( ~ ) ( ~ o ~ )  = x ( 2 ) ( - ~ l ( ~ l ) ) ( - ~ l  (0,)) = x ( ~ ' E ~ ( o ~ ) ~  

The second equality implies that -P(2)(201) = P'2'(201) which can only hold if x'" equals 
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zero. Therefore we have shown a fundamental property for materials that possess 

inversion symmetry: Materials that possess inversion symmetry will have x'~' = 0. As an 

example, gases and liquids are centrosymmetric materials which have xc2' = 0. 

We also see from Eqn. (2.5) that a polarization with zero frequency is produced or in 

other words a DC electric field is established in the material. This is known as optical 

rectification. The symmetry properties of x"' (as'will be discussed shortly) imply a 

reciprocal effect that a DC field applied to the material can be used to change the phase 

of the input wave [6].  This can be described as SFG where one field at = o and 

another field at 02 = 0 (DC) art applied to the material which produces a third field at % 

= a + 0 = o that has a phase change relative to 01. This is known as the electro-optic 

effect [5]. We would like to therefore note that the electro-optic effect is a second-order 

nonlinear process that is generated through a material's f2' .  

All of the processes described in Eqn. (2.5) arise through a materials x'". SHG, SFG, 

DFG, and optical rectification (electro-optic effect) can be viewed as x"' processes each 

with distinct values for the interacting frequencies. The experimental work in the next 

three chapters studies SHG, SFG, and the electro-optic effect and so we will limit the 

following discussion to nonlinear properties which arise from f 2 ) .  We will further limit 

our discussion to second-order interactions between just three fields, E(ol), E(%), and 

E(%). We will now proceed with developing a more useful mathematical description of 

sum frequency generation, second harmonic generation, and the electro-optic effect 

involving a maximum of three applied fields. 

Eqn. (2.6) and Eqn. (2.7) are the general forms we will use for the electric fields and 
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polarizations. The index i specifies the Cartesian components, the index n is a sum over 

all positive and negative frequencies, the amplitudes E,(%) and Pi(%) are complex 

numbers, in is the wavevector at frequency a, and ? is the position vector. For the 3 

fields that we will consider, n runs over f l ,  XI, and f3. We have not shown any explicit 

spatial dependence for ~ ( Q J  and Pi(%) because we will assume that they are spatially 

slowly-varying field amplitudes. Also, O, should not be regarded as the argument of a 

function but rather a parameter index. The fields in Eqns. (2.6) and (2.7) are physically 

observable and hence must be real quantities and so the complex amplitudes must satisfy 

We would now like to generalize Eqn. (2.5) to threedimensions and write it in a 

much more compact form. In onedimension, E, P, and x were scalars. In three- 

dimensions, E and P become vectors and have three orthogonal components each. x'"' 
becomes a third rank tensor &qtc'2'(a,, + a,,,; a, a,,,)) and multiplies two vectors to form a 

third. The three-dimensional form we will assert for Eqn. (2.5) will be given without a 

derivation. It is a standard result that may be found in many books [5-71. We define the 

components of the second-order susceptibility tensor (xij$'(% + G; a, a,,,)) as the 

constants of proportionality relating the amplitude of the nonlinear polarization to the 

product of the field amplitudes by 
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The indices i, j, and k each refer to the three Cartesian components of the fields (Le. i can 

refer to x, y, or 2). The notation (nm) indicates that, in performing the summation over n 

and m, the sum = 01 i- 02) while the frequencies are 

permuted (in this case 01 and 02 are permuted). We have used the notation x(2’ = 

+ a,,,; a, a,,,) to indicate that in general &jk2) depends on all three frequencies 

+ & is to be held fixed (i.e. 

and the order in which they appear. 

We will write out the polarization components for the interactions of three fields 

(E(or), E(@), and E(@)) for the cases of SFG and SHG to illustrate how to use Eqn. 

(2.9). First let’s consider SFG. Let the applied frequencies be 01 and a and the sum 

frequency be w, such that @ = 01 + 02. By doing the summation over o, and a,,, in 

Eqn. (2.9) we obtain 

The nonlinear susceptibility has a property known as intrinsic permutation symmetry. 

Intrinsic permutation symmetry implies that reversing the order of 01 and % in XijJ2’(Y; 

01, a) does not change its numerical value as long as the indices j and k are permuted as 

well. Physically this can be seen from Eqn. (2.9). The order the applied fields were 

written in Eqn. (2.9) was arbitrary and could just as well have been written with n and m 

and j and k interchanged without affecting the value of the term. In other words, the 

numerical values of the un-permuted (xijt2)(%; 01, 02)) and permuted (~&j(~) (@;  ~ , O I ) )  
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susceptibilities are equal. Mathematically, intrinsic permutation symmetry can be 

expressed by 

Application of intrinsic permutation symmetry reduces Eqn. (2.10) to 

(2.1 1)  

(2.12) 

where still @ = 01 + 02. 

The interaction of all three frequencies is accounted for in Eqn. (2.9), that is E(@) 

generated by E(o1) and E(@), E(Q) generated by E(@) and E(%), etc. It will be 

instructive now and useful later to write out how the differentfiequency components are 

related for SFG according to Eqn. (2.9). We are only interested in the frequency 

components in Fqn. (2.9) that are involved in SFG, Le. P(ol), P(%), and P(oj), so 

permuting the frequencies, performing the summation, identifying the sum frequency 

terms, and applying Eqn. (2.8) gives 

I 

(2.13) 

where we only show the terms with the positive frequencies however there are three more 

terms for the negative frequencies. The equations in Eqn. (2.13) were found by rewriting 

Eqn. (2.12) using 01 = 03 - @, etc. Also note in Eqn. (2.13), the index i specifies either 
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x, y, or z for eachfrequency component. These equations will be useful later in this 

chapter for writing down the coupled amplitude equations for SFG. 

Next we consider SHG. This is a special case of SFG where = 01 and 03 = 2 ~ .  

The input frequency is taken as 01 and the generated harmonic as @ = 2m1. Again 

performing the summation over on and m,,, in Eqn. (2.9) we obtain 

where e = oI + 01. Once again the interaction of both frequencies is accounted for in 

Eqn. (2.9), that is E(@) generated by E(ol), and E(o1) generated by E(o1) and E(Q). It 

will be useful later to have written out how the different frequency components are 

related for SHG according to Eqn. (2.9). We are only interested in the frequency 

components in Eqn. (2.9) that are involved in SHG, Le. P(Q) and P(@), so permuting 

the frequencies, performing the summation, identifying the harmonic terms, and applying 

Eqn. (2.8) gives 

‘ 

(2.15) 

where we only show the terms with the positive frequencies however there are two more 

terms for the negative frequencies. These equations will be useful later in this chapter for 

writing down the coupled amplitude equations for SHG. 

A lossless material gives rise to two other useful symmetries obeyed by xiji2). The 
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first is that all of the components of Xijk(*) are real. The second symmetry obeyed by xijt2) 
for a lossless material is fulZ permutation symmetry. Full permutation symmetry means 

that all of the frequency components of Xjt2’ can be freely interchanged as long as the 

corresponding Cartesian indices are interchanged simultaneously. Neither of these two 

symmetry properties of XijJ2’ will be proven here, however the proof that Xijl,(l) is real 

follows from considering a classical anharmonic oscillator and can be found in Ref. [6] 

and the proof of full permutation symmetry follows from considering the electromagnetic 

energy density in a lossless medium and can be found in Ref. [5]. 

When nonlinear optical interactions are occurring for frequencies that are far from 

any resonant frequency of the material, the nonlinear susceptibility is essentially 

independent of frequency [SI. Kleinman 

symmetry implies that the indices of Xijk(*) can be permuted without permuting the 

frequencies since xijt2) is independent of frequency. Eqn. (2.16) shows one of the 

equalities satisfied by zjt2’ when Kleinman symmetry is valid. 

This is known as Kleinman symmetry. 

When meinman symmetry is valid it is common practice [5-71 to introduce the dijk 

tensor used by experimentalists. The dijk tensor is defined by 

(2.17) 

where there are no frequency indexes on Xijt2) or dijk because both are assumed to be 

independent of frequency (Kleinman symmetry). The components of the dijk tensor are 
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referred to as the nonlinear coupling coeficienfs. Using Eqn. (2.17), Eqns. (2.12) and 

(2.14) become 

and 

Intrinsic permutation symmetry implies that dijk is symmetric in its last two indices. 

This allows the notation to be simplified by contracting the last two indices on &jk (i.e. 

dil) according to 

jk: 11 22 33 23,32 31,13 12,21 

1: 1 2 3 4 5 6 
(2.20) 

The tensor dil can then be written in terms of a 3 x 6 matrix as 

(2.21) 

This notation has explicitly reduced the number of independent components of dijk to 18. 

If we now impose the Kleinman symmetry condition, then d12 = d26, d14 = d25, etc. and 

Eqn. (2.21) becomes 

d,, = (2.22) 

Here the number of independent components has dropped to 10. When Kleinman 
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symmetry is valid, we can write Eqn. (2.18) (SFG) in terms of the dil coefficients in a 

matrix equation as 

P X  (03 dll d12 d13 d14 d15 d16 

d22 d23 d24 d25 d26 

d31 d32 d33 d34 d35 d36 

Similarly, we can also write Eqn. (2.19) (SHG) in terms of a matrix equation as 

E, 

(2.23) 

Before we discuss Eqn. (2.21) further in terms of imposing a specific crystal symmetry, 

we will digress and discuss a material's linear response to an applied optical (electric) 

field. 
* 

2.3 Anisotropic materials 

2.3.1 Dielectric tensor Eij 

When an electric field is applied to a material, the dielectric tensor (Qj) relates the 

material's linear response (6 ) to the applied electric field ( E  ). The dielectric tensor is an 

important concept in the study of nonlinear optics because it is closely related to x(')  and 
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the linear refractive index [5] .  Anisotropy in a material's dielectric tensor (index of 

refraction) is the basis for constructing the index ellipsoid [8] and can be utilized to 

produce efficient nonlinear interactions. The dielectric tensor (Le. the relation between 

6 and E)  can be derived from first principles using Maxwell's equations. 

Maxwell's equations in c.g.s. units are 

v * 6 = 4np, 

- 136 4n;r 
at VxH=--  +-Jf 

(2.25) 
V - i i  =o 

with the constitutive equations 

We will now focus on the first constitutive equation involving 6 and assume that 

electrical anisotropy will be encountered. We use the first term on the right hand side of 

Eqn. (2.1) to write Pic') = xi!'$, where Pi(') is the linear polarization and xif') is the linear 

electric susceptibility. Inserting this relation for 

Eqn. (2.26) we obtain 

into the expression for 6 given in 

Di = G.E. J J  (2.27) 

where Eij 3 1 + 4mij'') [9] and i and j designate Cartesian components. Qj is called the 

dielectric tensor. We can write Eqn. (2.27) in matrix form as 
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(2.28) 

A material that has isotroDic electrical properties has a dielectric tensor that in the 

principal axis system is diagonalized with components that are all equal (i.e. E,, = = 

h) [9]. A material that has anisotroDic electrical properties (i.e. electrical properties that 

vary along different directions in the material) has a dielectric tensor that in the principal 

axis system is diagonalized but with components that are in general not equal (i.e. f 

Eyy fa. 
We can relate ~j for an isotroDic material to the linear refractive index (n) through the 

C wave velocity ( v = - ) and Eqns. (2.25) and (2.26) [9]. The result is 
n 

n 2 = E =  1+4m (2.29) 

where we have used Gj = E and aj = x since for an isotropic material Gj &ij) has only 

diagonal components that are all equal. 

An anisotroDic material will, according to Eqns. (2.28) and (2.29), have refractive 

index values that vary depending on the direction chosen in the material [8]. Materials 

that have more than one value for the index of refraction are called birefringent. A 

consequence of birefringence is that for a particular input polarization, the material can 

respond in orthogonal directions since ~j is a tensor. In other words, in general and 6 

will not be in the same direction in birefringent materials. Most materials that are 
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naturally birefringent are crystalline and so the following discussion will be limited to 

crystalline materials. 

2.3.2 Index ellipsoid 

A very useful tool for understanding and utilizing birefringent crystals is the index 

ellipsoid. The index ellipsoid is a geometric construction that can be used to find the two 

allowed polarization directions and the corresponding refractive indices for an arbitrary 

direction of propagation through a birefringent crystal [8]. In order to develop the index 

ellipsoid, we will consider the electromagnetic energy density and the Poynting vector for 

a wave (optical field) propagating in a birefringent crystal. Equations for calculating the 

electric field energy density (We), the magnetic field energy density (W,,,), and the 

Poynting vector (3 ) are given by 

1 - -  1 2  W,,, =-(B.H)=-J.LH 
87r 8n; 

- c  
S=-@Xii)  

4n 

respectively. The net power flow into a unit volume is given by 

(2.30) 

(2.3 1) 

(2.32) 

v .s = c v .  (EXH) (2.33) 

Now by taking the dot product of 2 with the curl of H and the dot product of fi with 

the curl of 5 in Eqn. (2.25) and using a vector identity [6] we find 

4n; 
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(2.34) 

where Eqn. (2.27) has also been used. The second term on the right-hand side of Eqn. 

(2.34) is the rate of change of the magnetic energy per unit volume. The first term on the 

right-hand side of Eqn. (2.34) is the rate of change of the electric energy per unit volume 

only if the dielectric tensor (Gj) is symmetric, Le. 

Gj = &ji (2.35) 

This symmetry requirement reduces the number of independent components of Qj to six. 

Writing out the expression for the stored electric energy density (Eqn. (2.30)) and using 

the symmetry of Eij we find 

We =-(&,E: 1 + +&,E: + E,E,E, + 2E,ExE, + ~E,E,E,) (2.36) 
81c 

We is a positive definite quantity because it represents energy. Therefore geometrically 

Eqn. (2.36) defines the surface of an ellipsoid. The axes of the ellipsoid can be found by 

rotating to a new orthogonal coordinate system that diagonalizes Eij, Le., 

-: E: :][:;I 
0 0 E, E, 

(2.37) 

Note that since we are considering an anisotropic crystal, in general E~ f E~ f &. The 

expression for We in Eqn. (2.36) in this new coordinate system becomes 
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8n: 

we = -(E,E~ + E y ~ :  +&,E; ) 

26 

(2.38) 

The axes of the coordinate system that diagonalizes Eij are called the principal 

dielectric axes. The principal dielectric axes are special in the sense that when 

coincides in direction to one of these axes, E and 6 will be parallel. When E is not 

along one of the principal dielectric axes we see from Eqn. (2.37) that E and 6 will 

(Gx6)) and point in different directions. As a consequence, the wavevector ( = - 
onH2 

C 

the Poynting vector (s = "@x ) will not be collinear. Therefore when a randomly 
4n: 

polarized beam enters a crystal its two allowed orthogonal polarizations [8] will in 

general propagate in two different directions and the beam will split into two beams. 

This is known as double refraction [lo]. Another term used to describe double refraction 

is "walk-off" which refers.to how the two orthogonal polarizations separate from each 

other as they propagate through the crystal and produce two beams [l 11. 

Let's express Eqn. (2.38) in terms of the components of 6 (i.e. D, = ex&, etc.) and 

use ni E ,/pi [6] (this definition for the nits defines the principal indices of refraction). 

Substituting into Eqn. (2.38) we obtain 

(2.39) 

Letting x = D,/ ,/- , etc. in Eqn. (2.39) we find 
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(2.40) 

Eqn. (2.40) represents an ellipsoid with its axes in the x, y, and z directions. It is known 

as the index ellipsoid or the optical indicatrix. A basic index ellipsoid is shown in Fig. 

2.1. The directions x, y, and z in Fig. 2.1 are called either the principal dielectric axes or 

Figure 2.1. The index ellipsoid. The principal refractive indices are labeled (nx, ny, and 
n3 and A and B are the two allowed orthogonal polarizations for the given wavevector 
WI . 

the dielectric directions. The lengths of the axes of the index ellipsoid (along x, y, and z) 

shown in Fig. 2.1 are equal to the values of the principal refractive indices (nx, n,,, nz). 

The planes formed by the principal axes are called the principal planes. 

We will now describe how the index ellipsoid can be used to find the two allowed 

polarization directions and the corresponding refractive indices for an arbitrary direction 

of propagation. This will be an operational description given without proof. The formal 

proof of why this works is given by Born and Wolf [8]. The basic technique is shown in 
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Fig, 2.1. Through the center of the ellipsoid we draw a plane perpendicular to the 

direction of propagation ( ). The intersection of this plane and the ellipsoid is in general 

an ellipse (ellipse with solid line in Fig. 2.1). The two axes of the ellipse are parallel to 

the two allowed polarization directions and the length of each axis is equal to the value of 

the refractive index in that direction. The exact shape of the index ellipsoid for a 

particular crystal depends on the relationship between n,, ny, and n, (i.e. n, # ny, etc.) 

which is determined by the crystal's spatial symmetry. 

2.3.3 COBcrystab 

If the lengths of all h e  axes of the optical indicatrix are equal the crystal has only 

one refractive index and is referred to as isotropic. If any axes of the optical indicatrix 

are not q u a l  the crystal is termed anisotropic. There are two types of anisotropic crystals 

encountered in nature. If two axes of the optical indicatrix are equal, the crystal is termed 

unaxial. The term unaxial is used because in this case the crystal has one optic axis that 

is perpendicular to the plane formed by the two equal axes of the indicatrix. (An optic 

axis is defined as the wavevector direction that has a refractive index value that is 

independent of the direction of polarization, or in other words, it is the wavevector 

direction perpendicular to a circular cross-section of the optical indicatrix.) If all three 

axes of the indicatrix are unequal (three different values for the principal refractive 

indices), the crystal is called biaxial. The term biaxial is used because in this case the 

crystal has two primary optic axes [8]. For a biaxial crystal with n, < ny < n,, the two 

optic axes lie in the xz principal plane [ 101. If ny is closer in value to n, the crystal is 

called positive biaxial and if ny is closer to n, the crystal is called negative biaxial [IO]. 

For a positive biaxial crystal, the z-axis is the acute bisector of the angle between the two 
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optic axes. For a negative biaxial crystal, the x-axis is the acute bisector of the angle 

between the two optic axes. Fig. 2.2 shows the optical indicatrix for a negative biaxial 

crystal. In the following sections, we will discuss properties and interactions primarily 

for polarizations that are either along principal axes or that lie in principal planes. The 

Figure 2.2. Optical indicatrix for a negative biaxial crystal where n, c n,, < n,. The x, y, 
and z-axes are the crystal's dielectric axes and n,, ny, and n, are the principal refractive 
indices. Note that the optic axes lie in the xz plane where the x dielectric axis is the acute 
bisectrix and V is the optic angle [ 101. 

refractive index for wavevectors ( i )  lying for instance in the xz principal plane, can be 

calculated from 

where n, and n, are principal refractive indices and $ is measured from the x-axis in the 

xz plane. The refractive index for wavevectors oriented in the other principal planes can 
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be calculated similarly by using the appropriate pair of indices and knowing from which 

axis the angle is measured. 

Many different conventions for specifying directions in biaxial crystals can be found 

in the literature [ 121. Our convention for specifying directions in biaxial crystals will be 

in terms of the Euler angles $ and 9 as measured from the principal dielectric planes. The 

angle 4 will be measured from the acute bisectrix (Fig. 2.2) within the plane containing 

the acute bisectrix and the optic axis. The angle 8 will be measured from the y dielectric 

axis in the xy plane. For uniaxial crystals, our convention will be that 9 is measured from 

the optic axis and $ is measured from the x dielectric axis. Another convention we will 

use concerns labeling of the principal refractive indices for biaxial crystals. We will 

always label the smallest principal refractive index of a biaxial crystal with n, and the 

largest principal refractive index with n,. 

Whether a crystal is isotropic or anisotropic, and in the anisotropic case, whether it is 

uniaxial or biaxial, is determined by the crystal's point group symmetry. Crystals with 

cubic symmetry are isotropic. Crystals with trigonal, tetragonal, or hexagonal symmetry 

are uniaxial. Crystals with orthorhombic, monoclinic, or triclinic symmetry are biaxial. 

A crystal's specific point group is determined by the crystal's atomic structure and can be 

described by 3 crystallographic axes (a, b, and c) and 3 angles (a, p, and y). For the 

monoclinic structure, the three crystallographic axes a, b, and c are not mutually 

orthogonal (101. The directions of the crystallographic axes are typically determined 

using X-ray diffraction and are generally different in direction from the principal 

dielectric axes. 

The COB crystals have been determined using X-ray diffraction at LLNL to be 
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monoclinic crystals belonging to the m symmetry class. The convention used for the 

single mirror plane is that it is perpendicular to the b crystallographic axis. The COB 

crystals have been determined by Ref. [3] to be negative biaxial crystals. The crystal 

structure for GdCOB is shown in Fig. 2.3. The unit cell constants for GdCOB were 

Figure 2.3. Crystal stnrcture for GdCOB 131. 

determined by Ref. [3] and found to have values of a = 0.8095 nm, b = 1.6018 nm, and c 

= 0.3558 nm. The relative directions of the dielectric axes and the crystallographic axes 

for GdCOB were also determined by Ref. [3] and are shown in Fig. 2.4. The ac 

crystallographic plane is parallel to the xz principal plane. The b crystallographic axis is 

parallel to the y dielectric axis, the c-axis is at 15' to the x-axis, and the a-axis is at 26' to 

the z-axis as shown. 

We now return to the discussion of the dil matrix (Eqn. (2.21)) and will give its form 

for the COB crystals. The form of the nonlinear susceptibility tensor, or equivalently the 

de tensor, is constrained by the symmetry properties of the nonlinear optical medium. 

The dil matrices have been previously determined for all the known symmetry groups and 
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Figure 2.4. Relative orientation of the dielectric axes (x,y,z) to that of the 
crystallographic axes (a,b,c) for GdCOB [3]. 

can be looked-up in many books [5,7,13]. The COB crystals are in the monoclinic crystal 

class with point group m symmetry with the convention that m I b. Therefore the dii 

tensor has the form given in Eqn (2.42) [SI. The symmetry group (m) makes several 

dil (monoclinic crystal class, point group m) = 
d l l  d12 d13 d31 

' 0 0 0 d3, 0 d12] (2.42) 

d31 d32 d33 d,3 

components of the dil matrix zero 171 as is also shown in Eqn. (2.42). The form of the dil 

matrix in Eqn. (2.42) is what will be used when describing the SHG and SFG interactions 

in the COB crystals. 

2.4 Second harmonic generation (SHG) 

2.4.1 SHG efficiency 

In Chapters 3 and 5, we will present and analyze results from SHG experiments 

conducted with the COB crystals. These experiments will observe SHG and investigate 

how the SHG depends on several quantities including wavevector mismatch (Ak). 
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Therefore we will now discuss the relevant concepts and derive the mathematical 

expressions that will be necessary to explain and interpret the experimental data in 

Chapters 3 and 5. 

A special case of SFG occurs when both input waves have frequency o and the 

generated wave has frequency 20. This is called second harmonic generation (SHG). 

We would like to know mathematically how the irradiance at o is related to the 

irradiance at 2 0  for SHG. This would allow us to predict the efficiency of our SHG 

interaction. We will now derive a relationship between the irradiance at o and the 

irradiance at 2 0  that involves, among other parameters, the amplitudes of the interacting 

waves, the coupling coefficient (d), and the wavevector mismatch (Ak). 

Starting with Maxwell's equations given in 4 n .  (2.25), we will first derive a wave 

propagation equation that has the nonlinear polarization as a source term. This wave 

equation will allow us to determine coupled equations between the lo and 20 amplitudes 

for the case of SHG, which we will then solve to determine the 20 amplitude as a 

function of the 1 0 amplitude. If we assume 

and nonmagnetic, from Eqn. (2.25) we obtain 

= 0 and that the material is nonconducting 

- l a 6  
at 

VXH=-- 

with the constitutive relation 

- l a  VXE= ---(a) 
C a t  

(2.43) 

- -  - 
D = EE + 41tP,,~,li,,~ (2.44) 

In Eqn. (2.44), the linear polarization is included in E and Pmlincar is the second-order 
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nonlinear polarization. If we take the curl of the curl of fi given in Eqn. (2.43), we find 

using the curl of fi , the vector identity X x e = B(A e C )  - C(A . B) , and V = 0 for 

plane waves [SI that 

- - . -  - _ -  

(2.45) 

This is the driven nonlinear wave equation and we will use it to find coupled equations 

that relate the lo and 20  amplitudes for SHG. 

We will now restrict the problem to propagation along one-dimension (i.e. in the z 

direction) for simplicity. We will use the form for E given in Eqn. (2.6) and the forms 

for given in Eqns. (2.7). (2.15), and (2.19) to write our one-dimensional fields. 

Therefore, with = 201 (note this is a slightly different notation than was used in 

section 2.2), the amplitudes of the two interacting electric fields can be written as 

(2.46) 

Likewise the polarization amplitudes can be written as 

The nonlinear coupling coefficient (d) in Eqn. (2.47) is written in a completely general 

form. (As will be discussed shortly, the form for d is not necessarily a single component 
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of the dil tensor but in general is dependent on the symmetry of the crystal and the 

geometry of the interaction.) Note that the subscripts on the amplitudes in Eqns. (2.46) 

and (2.47) have the following meanings 1 02 = 201. Also, note that k, = 

2nn(ol)/hl and k2 = 2nn(oz)/h2 = 4m(02)&. 

01 and 2 

We will now derive the coupled amplitude equations for E1 and E2 by substituting 

Eqns. (2.46) and (2.47) into the wave equation (Eqn. (2.45)). If we assume that the 

. conversion efficiency is small, then the field amplitudes will change very slowly in the z 

direction and we can make use of the slowly-varying envelope approximation. The 

slowly-varying envelope approximation is stated mathematically by 

191 << llcq (for i = 1 and 2) (2.48) 

Physically, Eqn. (2.48) requires that the change in the amplitude with z occurs only over 

distances much larger than an optical wavelength. The slowly-varying envelope 

approximation therefore allows us to ignore the second-order derivatives in our coupled 

equations. Making the substitutions into the wave equation and using Eqn. (2.48) and k t  

= 0i2E/c2 (for i = 1 and 2) [5] ,  we obtain the following pair of coupled equations 

aEl -8~io:dEfE2 -i&z e -- 
aZ k,c2 

(2.49) 

(2.50) dE2 - 16nio;dE: 
aZ k,c2 
-- 

where 02 = 201 and the wavevector mismatch Ak = (2kl - k2). The general solution to 

Eqns. (2.49) and (2.50) is difficult, however, if we assume that the generated or signal is 
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small and therefore the input field at 01 is essentially constant (i.e. El # El(z)), we can 

integrate Eqn. (2.50) from z = 0 to z = L (here L is the length of the crystal or the 

interaction length) and use = 27tc/hl, k2 = 27tn(@)/h2, and h2 = h1/2 to obtain 

(2.5 1) 

We would like to express this result as a real quantity and in terms of the irradiances, = 

(n(cn&12x)lq12. So converting to irradiances and also using the identity 2sin’A = 1 - 

cos2A we find the irradiance at 0~ (12) to be given by 

(2.52) 

We define the SHG conversion efficiency as 

(2.53) - I2 
rlcff =- 

I1 

Eqns. (2.52) and (2.53) allows us to write down qem for the case of perfect 

phasematching (Ak = 0) as 

(2.54) 

Note that the SHG efficiency in Eqn. (2.54) depends on the lo irradiance (11). 
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2.4.2 Phasematching 

2 AkL sin(-) 
The term [ $ ] in Eqn. (2.52) is a measure of the phase mismatch between 

the applied lo wave (0,) and the generated 2 0  wave (or). Typically, due to a material's 

dispersion (i.e. n(m) # n(o1)) Ak f 0 (k = 27cn/h) and therefore the 2 0  signal is small. If 

Ak can be made = 0, then the lo and 20 waves will be in phase and the lo wave will be 

efficiently converted producing a large 2 0  signal. Arranging to have Ilk = 0 is called 

phasematching. Phasematching is therefore conservation of linear momentum (p = tik) 

by the nonlinear interaction. Stated mathematically for our onedimensional case, 

phasematched SHG occurs when 

Ak = (2kl- k2) = 0 (Conservation of momentum) (2.55) 

Since the nonlinear interactions we are considering are parametric interactions (i.e. the 

state of the material is unchanged by the interaction [SI), energy will also be conserved. 

So a secondary condition that must be satisfied by the nonlinear interaction is 

conservation of energy. Conservation of energy can be expressed as 

or = 01 + 01 (Conservation of energy) (2.56) 

In order to achieve efficient conversion and a maximum 20 signal, we want a 

phasematched situation (Ak = 0). The condition for phasematching in Eqn. (2.55) implies 

that 2kl = k2 or n(ol) = n(@). One method of achieving n(o1) = n(*) is to utilize the 

birefringence of an anisotropic crystal. In an anisotropic crystal, or most any material for 
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that matter, the indices of refraction depend on the wavelength of the light. This is called 

dispersion and is illustrated in Fig. 2.5. The dependence of the refractive indices on 

Refractive 
index 

wavelength as shown in Fig. 2.5 is usually expressed mathematically in terms of 

Sellmeier equations [8] which we will describe shortly. Fig. 2.5 also illustrates the basics 

of phasematching. As shown, a pair of lo and 20 waves have equal refkactive indices 

which makes Ak = 0 and therefore the SHG process is phasematched. The absolute 

values for the indices in Fig. 2.5 depend on the propagation direction through the crystal 

as described for example by Eqn. (2.41). The refractive index values change as the 

propagation direction changes because different cross-sections of the index ellipsoid are 

being taken. Often we are interested in phasematching a particular pair of wavelengths 

and so the angle of propagation must be properly chosen so that the desired wavelengths 

are phasematched. This is called angle-tuned phasematching. Terhune, et al. [14] and 
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Giordmaine [ 151 originally developed this method of phasematching. 

We will study phasematched SHG in the xz and xy plane of the COB crystals. n e  

first piece of information we will need to know in order to determine the phasematched 

wavelengths is how the principal refractive indices for the COB crystals vary with 

wavelength, in other words, we need the Sellmeier equations for the COB crystals. For 

example, a set of Sellmeier equations has been determined for YCOB by Ref. [2] and are 

given by 

I 

'0252847 - 6 . 4 4 6 5 0 ~ 1 0 - ~ ~ ~  
k2 - .O 13022 1 

(2.57) 

(2.58) 

(2.59) 

The wavelength value used in these equations is to be expressed in microns (cun). These 

equations can be used to calculate the principal refractive indices for YCOB for a given 

wavelength in the range of 0.3 - 1.3 p. 

There are two types of phasematching that we will consider: type I and type II. Type 

I phasematching is where both l o  waves are polarized in the same direction and the 2 0  

wave is polarized in a perpendicular direction. Type 11 phasematching is where the two 

l o  waves are polarized in orthogonal directions and the 20 wave is polarized parallel to 

the l o  wave in the direction of the lower index [6]. 

For type I SHG in the xz plane of the COB crystals, that is with both l o  waves 
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polarized along the y dielectric axis and the 20 wave polarized in the xz plane, the 

condition for phasematching is 

412: Ak = 2k, - k = -(n (o, ) - n Iz (a2)) = 0 
1, 

where ny(al) is the refractive index along the y dielectric axis at frequency 01 and nx,(m) 

is the refractive index in the direction of the 02 polarization in the xz plane as given by 

Eqn. (2.41). The Sellmeier equations along with Eqn. (2.41) can be used to find the 

propagation direction that satisfies Eqn. (2.60) for a given pair of wavelengths. 

For type II SHG in the xy plane of the COB crystals, the condition for phasematching 

is 

(2.6 1) 

here one of the lo waves is polarized in the xy plane and the other is polarized along the 

z dielectric axis. The 20 wave is generated with its polarization in the xy plane. The 

refractive index designations are similar to those described for Eqn. (2.60). 

As an example, we will calculate how the phasematched wavelength for YCOB depends 

on the propagation direction for the case of type I SHG in the xz plane using Eqn. (2.60), 

the Sellmeier equations given in Eqns. (2.57) - (2.59), and Eqn. (2.41). The calculated 

phasematched lo wavelengths for YCOB are shown in Fig. 2.6. The angle of 

propagation is specified from the z dielectric axis, which according to our conventions is 

@ - 90". Note that phasematched SHG at 1.064 vm occurs at an angle of 32' from the z 

dielectric axis. 
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Figure 2.6. Type I phasematched SHG wavelengths for propagation in the xz plane of 
YCOB. The angle is measured from the z dielectric axis in the xz plane. 

2.4.3 de# 

As we briefly discussed following Eqn. (2.47). the value of d appearing in Eqn. (2.47) 

is not necessarily a single component of the di1 tensor. We now want to determine the 

exact form for the nonlinear coupling coefficient (d) that appears in Eqn. (2.47). We 

write the 2 0  polarization in a very general form similar to that given in Eqn. (2.47) as 

where E1 and E2 refer to the two interacting waves. Eqn. (2.62) specifies a general 

coupling coefficient (d), which depends on the components of dil for the particular crystal 

symmetry and the geometry of the interaction (propagation direction and type of 

interaction (I or 11)). We now replace d in Eqn (2.62) with &ff and we refer to it from 

now on as the effective coupling coefficient (standard nonlinear optics nomenclature). 
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We wish to determine &a for the case of type I SHG in the xz principal plane of the 

COB crystals. We will use YCOB as our example. The general approach [ 161 will be to 

first calculate the components of the total nonlinear polarization (I; ) generated at 2 0  in 

terms of the dil coefficients and the propagation angles using Eqn. (2.14). Once all the 

components for have been found, we will project out the component that is in the 

correct direction for the interaction (i.e. the component that is in the xz plane 

perpendicular to direction of propagation). The coefficient that appears in front of the 

field amplitudes involving the 41 coefficients and the angles will be defined as den. The 

geometry is shown in Fig. 2.7. For type I SHG in the xz plane of YCOB, with the lo 

wave polarized along the y dielectric direction, the components of the total nonlinear 

polarization at 2 0  are found using Eqns. (2.14) and (2.42) to be 

(2.63) 

From these components we want the component that is parallel to the xz plane and the 

vector il shown in Fig. 2.7. We want the component of p2a parallel to k, since this 
& 

will be the correct direction for the 20 polarization for the type I process. The 2 0  wave 

with this polarization will propagate in the same direction and with the same speed as the 

lo wave and will therefore be phasematched and grow in irradiance. Since there are 

only x and z components to the total nonlinear polarization (4,), lies in the xz plane 
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Figure 2.7. Genmetry for deriving &E for type I SHG in the xz principal plane of YCOB. 
x, y, and z are the principal dielectric directions, + is the phasematching angle measured 
from the x dielectric axis in the xz principal plane, gla is the 10 wave amplitude, Elw is 

the propagation vector and it lies in the xz plane, and so, is the &&l 20 polarization 

which is also in the xz plane. E;, lies in the xz plane perpendicular to E,, where 

k, = - sin$: f cos@. 
A 

Therefore the component of F2a parallel to k, is equal to So, c, . So we have, 

- kl = d,,E$n$ - d,,cos+E; = (- d,,sin$ + d,,cos$)E~ (2.64) 

The term on the far right of Eqn. (2.64) can be equated with an. (2.62) to determine 6~ 

for type I SHG in the xz plane of YCOB as 

de, = d,,cos@ - d,,sin+ forQ>V (2.65) 

where @ is measured from the x dielectric axis and V is the optic angle (Fig. 2.2). Eqn. 

(2.65) applies to all the COB crystals since they all have the same crystal symmetry. 

W e  would like to comment on the units of 4~ (and dil). As was stated earlier, all of 

the derivations will be in c.g.s. units unless otherwise noted. The dimensions of the 
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effective coefficient (&ff) and the tensor coefficients (dil) in c.g.s. units are centimeters 

per stat. volt (cdstatvolt). In MKS units, which will be the units chosen for the 

numerical results in Chapters 3 and 5,  &ff is expressed in meters per volt (m/V). The 

conversion [6] from c.g.s. to MKS units is given by 

d ( ? ) = G Z  4n; d [ esuor st::olt) (2.66) 

In MKS units, the second-order nonlinear polarization is in general given by 

P = ~,,dEiEz (2.67) 

where E,, is the permittivity of free space and has a numerical value of 8.8542 x loei2 

C/(Vm). If we include G, in the definition of d in Eqn. (2.67), then the conversion 

between c.g.s. and MKS units (Eqn. (2.66)) becomes 

d(-$+)=3.71x10-1sd ( esuor st:olt) (2.68) 

2.4.4 Angular, thermal, and spectral sensitivities 

As we have shown, the 2 0  SHG response is dependent on Ak as given by Eqn. (2.52). 

AkL 
The dependence of the 20 irradiance on the function is commonly referred 

to as a sinc2 response (pronounced "sink-squared"). Ak can be varied or de-tuned from 

perfect phasematching (Ak = 0) by many different parameters, the ones we will consider 
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are deviation in angle (Ae), temperature (AT), and wavelength (Ak) measured from & = 

0. We can relate Ak to these detunings using a first-order Taylor series as 

(2.69) 

where it is assumed that when taking a particular derivative the other variables are held 

fixed. 

We can define the coefficients involving the partial derivatives in Eqn. (2.69) as 

specific sensitivities. Therefore, we define the angular sensitivity (PO), thermal sensitivity 

(PT), and spectral sensitivity (PA) as 

(angular sensitivity) a& 
P o  == 

(thermal sensitivity) aAk 
PT == 

(2.70) 

(2.7 1) 

(spectral sensitivity) a& 
P A  == (2.72) 

These sensitivities along with the crystal length tell us the EWHM of the sinc2 

dependence displayed by the 20 irradiance as the particular variable de-tunes Ak away 

from zero. The FWHM of the sinc’ function in Eqn. (2.52) is related to a particular 

sensitivity by 

5.5662295 1 
F w H M s i n c 2  = 

PvariableL 

(2.73) 

where L is the crystal length. An alternative expression to Eqn. (2.73) whose form is 
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often encountered in the literature is 

5.5662295 1 (FWHM ~xL)= sinc 
Pvariable 

(2.74) 

The FWHM of the sinc' response for various types of de-tuning is very useful to know 

when trying to establish a crystal's merit for a particular SHG application that requires for 

instance, a high tolerance to misalignment of the crystal (Ae) or to temperature change of 

the crystal (AT). 

Eqns. (2.70) - (2.72) can be used to calculate a particular sensitivity if Ak's 

mathematical dependence on the particular variable is known. Eqns. (2.70) - (2.72) 

express the sensitivities to first order as a particular slope of Ak. We can therefore 

determine a particular sensitivity by calculating the derivative of Ak with respect to that 

variable; Let's discuss this for the spectral sensitivity. We can write Ak as a function of 

wavelength using Eqns. (2.55) and (2.57) - (2.59). We can then calculate the change in 

Ak from zero for a given AX (i.e. for a given change in wavelength from the 

phasematched wavelength) which we denote as A(Ak(0)). We then divide this by the 

given Al value (i.e. A(Ak(o)) ) to determine a value for PX. Similarly, we can calculate 
Ah 

from Ak when Eqn. (2.41) is used to express the refractive indices appearing in Ak as a 

function of angle. 

The sensitivities can also be determined experimentally by measuring the 261 

irradiance as Ak is tuned through zero (for instance by rotating the crystal) and then 

fitting Eqn. (2.52) to the data. 
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2.4.5 Walk-off 

Walk-off [17] as was discussed in section 2.3.2 refers to how the two orthogonal 

polarizations of a wave propagating through an anisotropic crystal will in general 

propagate in different directions. For SHG, walk-off occurs between the lo and 2 0  

waves when the propagation direction is not along a dielectric axis. This effect will limit 

the interaction length since the lo wave and the 20 wave will separate as they propagate 

or, in other words, it will limit the maximum crystal length that would be effectively 

used. 

W e  will not derive the following equations because they are standard results that are 

commonly used in the field of nonlinear optics. Consider the SHG interaction between 

two waves. If one wave is polarized along a dielectric direction and the other is not, the 

two waves will experience walk-off and the propagation directions 'of the two waves will 

be at a small angle. This small angle is called the walk-off angle (p). The effect of the 

walk-off angle for SHG interactions can be expressed as a limit to the effective 

interaction length [ 181 by 

L L'= 
(l+- Q ); 

W,& 

(2.75) 

where L is the physicai length of the crystal, p is the walk-off angle, and wo is the beam 

waist size. The walk-off angle (p) for a given propagation direction [l l]  can be 

calculated using 
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I 

2 tanp = n 

where n is the refractive index in the direction of the given wave's polarization, Si are the 

direction cosines for the propagation vector s, and ni are the principal refractive indices 

along the dielectric axes. These expressions will be used to correct for walk-off effects in 

the SHG data collected in Chapter 3. 

2.4.6 Non-criticalphasematching (NCPM) 

Phasematched interactions that are not along dielectric axes are called critically 

phasematched. When nonlinear interactions are phasematched for propagation down Q 

dielectric axis it is called noncritical phasematching (NCPM). NCPM is a very 

advantageous situation for two reasons. First, the angular sensitivity (Po) has a quadratic 

dependence on the misalignment angle (Le. (AQ)*) rather than a linear dependence as for 

critical phasematching [6]. The reason for the quadratic dependence on the misalignment 

angle in the NCPM case is because for small deviations (i.e. A0 e 1) away from 

propagation down a dielectric axis, the index ellipsoid looks approximately circular, and 

dAk 
d0 

therefore - = O  which means to first order the angular sensitivity is zero. The 

quadratic dependence on the misalignment angle in reality gives rise to a relatively broad 

sinc2 response as A0 varies which implies that NCPM interactions have relatively small 

but finite angular sensitivities (Po). A good descriptive illustration for the difference in 

annular sensitivities between critically phasematched interactions and NCPM interactions 

is shown in Fig. 2.8. The angular width of the NCPM signal in Fig. 2.8 is much larger 
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Figure 2.8. Experimental 2w irradiance data for equal length crystals illustrating the 
difference in response for critically phasematched SHG (left) and NCPM SHG (right). 
The tuning angle A0 is measured from the phasematching direction (Le. Ak = 0). 

(- lox) than for the critically phasematched case and since P o  is inversely proportional to 

the widths in Fig. 2.8 this implies that the NCPM interaction has an -10 times lower 

angular sensitivity. 

A second advantage of NCPM is that there are no walk-off effects due to double 

refraction. Walk-off is eliminated for propagation down a dielectric axis because the 

wavevector and Poynting vector point in the same direction as was previously discussed. 

An immediate benefit is that long crystal lengths can be utilized to increase the SHG 

efficiency for a given 10 irradiance, as opposed to critically phasematched interactions 

that have interaction lengths (crystal lengths) which are limited to the walk-off length 

given in Eqn. (2.75). One of the goals of the experimental investigations in Chapters 3 

and 5 is to identi.fy crystals that have useful NCPM wavelengths (i.e. 1.047 pn, 1.053 

p, or 1.064 pm). 
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2.5 Optical parametric oscillation 

2.5.1 Coupled-amplitude equations 

In Chapter 4, experiments will be conducted with the COB crystals to determine their 

potential for use in an optical parametric oscillator (OPO). In this section, we will 

discuss the important fundamentals of OPOs relevant to evaluating the experimental data 

we will present in Chapter 4. An OPO is a resonant optical cavity that contains a 

nonlinear crystal as the gain medium. Typically, an OPO is pumped by a strong 

monochromatic wave and through reverse sum frequency generation (which will be 

referred to as the OPO process from here on) produces two other waves from noise that 

are known as the signal and idler waves. The pump, signal, and idler waves have 

Figure 2.9. Energy level description of the OPO process showing the relation between 
the pump (quq), signal (ai@), and idler frequencies (mdleC) where cq,,,mp = a ignd  

+adlev  

frequencies that are related by qump = mipa1 + a d l e r  (alternatively written 03 = 0 1  + OZ) 

as shown in Fig. 2.9. We will focus our discussion on the singly resonant oscillator 

(SRO) configuration shown in Fig. 2.10. We first derive equations that describe the 

amplitudes of the interacting waves in the SRO. Once we have the expressions for the 

amplitudes we will then derive expressions for the round-trip gain and oscillation 
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threshold. We will treat the problem one-dimensionally (Le. in the z direction) for 

simplicity. 

R at a, 

0 at q Oat% 
Figure 2.10. Singly resonant optical parametric oscillator (SRO). The resonator cavity is 
composed of flat mimrs with the space between the mirrors CompIeteIy fiIled with a 
nonlinear crystal. RI and R2 are the resonator mirrors' reflectivities. E3 is the strong 
pump wave and El is the signal wave that is resonated. Note the idler wave (Ez) is not 
shown. 

R,= 1 Oat% at ") R, = (. at q } 

Coupled equations relating the amplitudes of the 3 interacting waves EI(z,t) (signal), 

E&,t) (idler), and E3(z,t) (pump) (note that here the subscripts refer to the three 

frequencies) can be derived for SFG by a very similar method as was used to find Eqns. 

(2.49) and (2.50) for SHG. The details can be found in Ref. [7] and so we will only quote 

the final results. For the case of no absorption losses and slowly-varying field 

amplitudes, the fields El, E?, and E3 are related by the following set of three coupled 

equations 

(2.77) 
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aE, 8xio;deff E,Er ibkz 

aZ k,c2 
e -= 

3= aE 8xia:d, E,E, e-ibkz 

az k,c2 

(2.78) 

(2.79) 

where Ak = k3 - kl - k2. We note in passing that these are the basic amplitude equations 

for parametric amplification. 

We seek solutions to Eqns. (2.77) - (2.79) for the conditions that Ak = 0 and no pump 

depletion, i.e. E3 is constant in z. Applying these two conditions reduces Eqns. (2.77) 

and (2.78) to 

aE 2 = C  E* 2 1  az 

Differentiation of Eqn. (2.81) and substitution of Eqn. (2.80) gives 

-- - K ~ E ,  a2E, 
az2 

(2.80) 

(2.8 1) 

(2.82) 

64x2d2 02a2 cff ' 
k,k,c4 

where K~ =C;C, = IE312. A general solution to Eqn. (2.82) is given by 

E, (z) = AsinhKz + BcoshKz (2.83) 

Applying the boundary condition that E2(0) = 0 to Eqn. (2.83) and using Eqn. (2.8 1) with 

El(0) = specified we obtain solutions for El@) and E~(z) given by 



1 ._ 
E, (z) = i - * kE;(O)sinhla 

lE3l 
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(2.84) 

(2.85) 

These are the solutions for the signal and idler wave amplitudes as a function of z for the 

conditions that the pump wave amplitude (E3) is constant and Ak = 0. Eqns. (2.84) and 

(2.85) will allow us to derive expressions in the next section for the round-trip gain and 

oscillation threshold for the SRO depicted in Fig. 2.10. 

2.5.2 R o u ~ - & @  gain 

We will calculate the roundtrip gain in terms of the fractional increase in the 

amplitude of El for a roundtrip pass around the resonator as shown in Fig. 2.10. Starting 

from the left, traversing the resonator and reflecting off the right mirror, the increase in 

E1 can be written using Eqn. (2.84) and a phase change as 

E, (L') =RE, (0)e-"lLcoshlcz (2.86) 

where R is the reflectivity of the right cavity mirror in Fig. 2.10. On the return path from 

right to left, there is no parametric interaction since the signal and pump waves are 

traveling in opposite directions, however there is still a phase change and so we write 

-2iklL E, (2L) =E, = RE, (0)e coshn (2.87) 

Eqn. (2.87) can be used to calculate the fractional roundtrip gain as 
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(2.88) 

In general, we require that the phase term in Eqn. (2.88) be equal to an integer multiple of 

27c in order to have oscillation (Le. k1L = 2mn for m = integer). In other words the 

oscillation frequency must correspond to a longitudinal mode of the resonator. We will 

now use Eqn. (2.88) to derive a condition for oscillation threshold in the SRO. 

2.5.3 Oscillation threshold 

Oscillation threshold will be reached when the phase condition is met and the 

roundtrip gain is equal to one. We can express this mathematically using Eqn. (2.88) as 

RcoshK,z = 1 (2.89) 

where we have set -iklL = 2ni in Eqn. (2.88) and IQ, is written to specify that this 

corresponds to the pump amplitude (E3 = E3&) that satisfies Eqn. (2.89). By assuming R 

= 1 and using the first two terms in the power series expansion for cosh, we can solve 

Eqn. (2.89) for E3*, which gives 

(2.90) 

It will be useful in Chapter 4 to have the oscillation threshold expressed in terms of the 

threshold pump irradiance. In c.g.s. units, irradiance is related to the field amplitude by 

nc 
2n 

I = -EE* . Therefore we calculate the oscillation threshold pump irradiance for our 

SRO to be 
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n3ch,h2( 1 - R) 
'3, = 2 5 6 1 ~ ~ d : ~  L2 

(2.91) 

This expression is written in c.g.s. units for the case of plane waves, perfect 

phasematching, and an undepleted pump wave. 

The oscillation threshold given by Eqn. (2.91) is for the most ideal situation possible. 

However, one not often has the chance to use perfect plane waves in the laboratory and 

so we would like a threshold estimate that is based on a more physically realistic 

situation. Brosnan and Byer [ 191 derive an expression for the threshold of a SRO under 

more realistic conditions. They consider a pulse pumped SRO where the pump beam has 

a gaussian profile in space and time and the signal and idler beams are gaussian in space. 

Their model also accounts for beam walk-off between the pump and generated beams. 

Eqn. (2.92) is the analytical expression derived by Brosnan and Byer [19] for the 

threshold pump fluence (F&(J/cm2)) of a pulse pumped SRO. Eqns. (2.91) and (2.92) will 

both be used in Chapter 4 to estimate the pump fluence needed to reach oscillation 

threshold in a NCPM SRO based on YCOB. c 

(2.92) 

where, 

2 = lie2 pump pulselength 

K = nonlinear coupling constant for YCOB = 
8n2d& 

hshinsnin p ~ O c  

W p  +WS 
gs = signal beam spatial mode coupling coefficient = 

spot size and ws = signal beam spot size) 

w' = (for wp = pump h a m  
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L = effective parametric gain length = crystal length 

L = optical cavity length = L'(physica1 cavity length) + (n-1)Qphysical crystal length) 

% = signa* 
Po signal noise power 

power E lOI4 (determined in general by Brosnan and Byer [ 191) 

a = crystal absorption coefficient at h, 

1 = crystal length 

R = reflectivity of the output coupler 

2.5.4 NCPM and degenerate wavelengths 

Optical parametric oscillators that have nonlinear interactions that are NCPM are very 

advantageous from a device point of view. NCPM has inherent low angular sensitivity 

(as discussed in section 2.4.6) which relaxes the alignment criteria on resonator designs 

and operation. The low angular sensitivity of NCPM also helps the efficiency of an 

oscillator when it is necessary to strongly focus the pump beam into the cavity. 

When the idler and signal beams in an OPO have the same frequency the oscillator is 

said to be operating in the degenerate mode (i.e. 03 = 01 + 01). In this mode the 

oscillator generates waves with a single frequency or, in other words from each pump 

photon two signal photons are created. Another way to look at this is that a degenerate 

OPO will completely convert a strong pump beam into strong single frequency signal 

beam. In Chapter 4 we will experimentally investigate the potential of utilizing the COB 

crystals in both a NCPM and degenerate OPO. 
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2.6 Linear electro-optic effect 

2.6.1 General introduction 

In Chapter 5, experiments will be conducted with YCOB to determine its potential for 

use in Q-switches [20] and electro-optic modulators [7]. A Q-switch or an electro-optic 

modulator is a device based on a crystal (typically) that exhibits the electro-optic effect. 

We will construct electro-optic modulators in Chapter 5 using YCOB crystals and will 

measure the transmitted irradiance through the modulators as a function of the applied dc 

or low frequency voltage. These measurements will allow us to determine the (effective) 

electro-optic coefficients for YCOB. In this chapter, we will discuss the important 

fundamentals of the electro-optic effect relevant to interpreting the experimental data we 

will present in Chapter 5. 

The electro-optic effect is the change in principal refractive indices of a crystal 

induced by the presence of a dc (or low frequency) electric field. W e  will be interested in 

the change of refractive index that depends linearly on the strength of the applied electric 

field. This is known as the linear electro-optic effect or the Pockels effect. This effect 

was studied extensively by Friedrich Carl Alwin Pockels in 1893. The linear electro- 

optic effect can be treated as the sum frequency mixing (SFG) of two waves (01 and m) 

with frequencies o and 0 creating a third wave (03) at frequency o with a different phase. 

This can be described in terms of a x(2’ process using Eqn. (2.12) as 

Pi (a3 = 0) = 2C.d; (m3 = O+ O;O,O)E, (@E, (0) (2.93) 
jk 

Although the linear electro-optic effect can be described in terms of a second-order 
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nonlinear susceptibility, historically a different mathematical approach has been used and 

it will be this alternative approach used for the derivations in this chapter [5] .  In order to 

interpret the experimental data in Chapter 5, we will need to be able to calculate how the 

transmitted irradiance through a YCOB modulator depends on the voltage applied to the 

crystal. We will need to know how the principal refractive indices of a crystal are 

modified by the application of a dc or low-frequency electric field in order to calculate 

the transmitted irradiance. We seek a relation that relates the change in refractive indices 

(6nij) to the components of the applied electric field (Ek) of the following general form 

(2.94) 

where ~ j l ~  is the electro-optic tensor [5]. Before p d n g  with deriving this relation for 

the changes in the refractive indices, we will discuss some of the underlying basics of the 

linear ekctro-optic effect including the rijk tensor. 

2.6.2 rQ2 coefficients 

In this section we develop a mathematical formalism that describes the linear electro- 

optic effect. We wish to determine how the index ellipsoid of a crystal is modified when 

the crystal is subjected to a dc or low-frequency electric field. The modification due to 

the applied electric field can be conveniently described in terms of the impermeability 

tensor, qij [5 ] .  The impermeability tensor (qij) is defined by 

(2.95) 

Note that this relation is the inverse of Eqn. (2.27) and hence, the impermeability tensor 
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(qij) is the inverse of the dielectric tensor (Eij). (Since Eij is symmetric (Eqn. (2.35)) and qij 

is the inverse of Eij, then qij must also be symmetric.) Preceding as with Eqn. (2.30), we 

write the electric energy density (We) as 

(2.96) 

Writing out the far right-hand side of this expression and using x = D x / , / W ,  y = 

D , J , / K ,  and z = D J J W  we obtain 

This represents the equation for the surface of an ellipsoid. Comparing Eqn. (2.97) to 

Eqns. (2.36) rind (2.38), we see that if x, y, and z are chose along the crystal's dielectric 

directions, then a n .  (2.97) reduces to 

V,X2 +rl,Y +q,z2 =1 (2.98) 

Comparing Eqn. (2.98) to Eqn. (2.40), we find that the following relations for the qii 

coefficients must be true 

1 
rlyy =- 

n; 
(2.99) 

where n,, ny, and n, are the principal refractive indices of the index ellipsoid. 

W e  next assume that the impermeability tensor can be written as a power series [5 ]  in 

the components of the applied dc electric field (Ek) as 
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ru = 

qij=qij (0) +CrijkEk + - - - = q ~ ’ + A i j + * * .  (2. loo) 
k 

- 
4 1 

r2 I 
r3 1 

r4 I 

rs 1 

-r61 

here Gjk is the linear electro-optic tensor and it describes the first-order modification to 

the impermeability tensor due to an applied dc electric field. The Gjk tensor is a third-rank 

tensor and its components will be referred to as the linear electro-optic coefficients [21]. 

Since the tensor qij is symmetric (i.e. qij  = Qi) then the linear electro-optic tensor (rijk) 

must also be symmetric in its first two indices. Therefore it will be convenient to write 

- 
3 

r23 

r33 
r43 
r53 
r63 - 

qjk in contracted notation as rw according to the following conventions for the indices: 

ij: 1 1  22 33 23,32 31,13 12,2 1 
(2.101) 

h: 1 2 3 4 5 6 

We can express r u  in terms of a 3 x 6 matrix as 

r1 2 

r22 
r32 

r42 

‘52 

r62 

(2.102) 

From Eqn. (2.100), the first-order modification (Ad) to the coefficients of the 

impermeability tensor (qj) due to the applied electric field can be written using the 

contracted notation as 

(2.103) 
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rhk (monoclinic crystal class, point group m) = 

Eqn. (2.102) allows us to write Eqn. (2.103) in matrix form as 

- - 
‘I1 r13 

r21 ‘23 

r31 r33 

r42 
(2.105) 

‘51 0 r53 

r62 -, 

AI 
A 2  

A 3  

A4 

4 
A 6  

(2.104) 

where E, are the components of the dc or low frequency applied electric field and the 

quantities r& are the linear electro-optic coefficients. The quantities & will be shown in 

the next section to be directly related to changes in the principal refractive indices of the 

crystal and can be calculated exactly for a given crystal symmetry with specific 

orientations of the input polarization, the applied electric field, and the direction of 

propagation. 

The exact form of the electro-optic tensor (Eqn. (2.102)) is constrained by the 

symmetry properties of the electro-optic crystal. The r k  matrices have been previously 

determined for all the symmetry groups [5,7,13]. As we have discussed, YCOB is a 

biaxial crystal and belongs to the monoclinic crystal class with point group m symmetry 
I 

with the convention that m L b. Therefore the ru tensor (matrix) has the form given in 

Eqn. (2.105) where some of its components are zero. 
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Eqn. (2.105) is the form for the linear electro-optic tensor that will be used to describe 

the linear electro-optic effect in the YCOB crystals. The mathematical expressions for 

the changes of the refractive indices in the YCOB crystals in terms of the coefficients of 

fhl, (Eqn. (2.105)) and the applied electric field will be derived in the next section. 

2.6.3 Induced birefringence and phase retardation 

A basic description of how the electro-optic effect can be observed is given in Fig. 

2.1 1. For this general discussion, we are assuming that the crystal has no natural 

birefringence. However, when the voltage is applied to the crystal, by definition of the 

electro-optic effect, a birefringence is induced [13] and we will assume the induced 

principal dielectric axes are along the y and z directions as shown in Fig. 2.11. 

Therefore, in Fig. 2.1 1 if the input beam's polarization ( Giw) is assumed to be at 45" to 

the z-axis, then with the voltage applied the polarization of the output beam (gout ) will 

Electro-optic 
Input beam 1 crystal 

polarization + 

X Vapplied 

Figure 2.1 1. Illustration of the electro-optic effect. Einc is at 45" to the z direction. The 
voltage (Vqph4) applied to the crystal induces a birefringence and causes a rotation of the 
input beam's polarization as shown by Eout. 
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be rotated relative to the input beam ( Ei, ) as shown. This rotation occurs because as the 

two orthogonal polarizations of the beam (5 and E&) traverse the crystal the 

birefringence induced by the applied voltage imparts a phase retardation between the two 

polarizations [13]. We will choose to label this phase retardation as r (In the following, 

whenever we speak of a phase retardation and label it by r we implicitly mean the net 

phase retardation between the waves). Therefore if the input beam in Fig. 2.1 1 is given 

by 

then with the voltage applied the output beam is given by 

(2.106) 

(2.107) 

where f3 is a common phase factor between the y and z components of E,, . We are 

assuming here that there are no reflections and that the crystal is totally transmitting. The 

polarization direction of the field described in Eqn. (2.107) is given by (-EY+Ee-"z) 

which can be seen to point in a different direction than that given in a n .  (2.106). If a 

polarizer is placed in the output beam in Fig. 2.11, the transmitted irradiance will change 

when the voltage is applied. By measuring the change in transmitted irradiance through 

the polarizer, we can determine the material's electro-optic coefficients (rijk). 

The exact mathematical expression for the phase retardation (r) depends on the 

particular crystal symmetry of the electro-optic crystal, the orientation of the input 
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polarization, the direction of the applied electric field (Vapplid), and the direction of the 

beam propagation relative to the crystal's dielectric directions. We would like to point 

out that since YCOB is a biaxial crystal there will be a static contribution to the phase 

retardation due to the natural birefringence of the crystal in addition to the phase 

retardation induced by the applied voltage. Fig. 2.1 1 shows a transverse arrangement (i.e. 

the applied voltage is transverse to the propagation direction of the beam), however it is 

also possible to have a longitudinal arrangement where the applied voltage is parallel to 

the direction of propagation. In Chapter 5, we will conduct experiments to measure the 

(effective) linear electro-optic coefficients for YCOB using both transverse and 

longitudinal arrangements. The exact expressions for the phase retardation (r ) produced 

by YCOB in the transverse and longitudinal arrangements used in our experiments are 

derived in the next three sections. 

2.6.4 YCOB phase retardation 

W e  are ultimately trying to relate the transmitted irradiance through a YCOB electro- 

In general, an electro-optic 

. r  modulator is a device that is composed of a polarizer followed by an electro-optic crystal 

followed by a second polarizer (analyzer). The first polarizer ensures that the input beam 

has a specific input polarization that is typically chosen perpendicular to the analyzer. 

optic modulator to the voltage applied to the crystal. 

A specific example of the type of modulator we will consider is the transverse 

configuration shown in Fig. 2.12. The quarter-wave plate ensures that circular 

polarization is incident on the crystal, Le. equal E, and l& components. If we can 

determine the output (transmitted) polarization components or, in other words, the 

electric field components after the beam traverses the modulator then we can calculate 
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the transmitted irradiance. We need to know the effect that each individual optical 

element in the modulator has on the polarization of the beam in order to determine the 

final output polarization. Therefore, we need to calculate the net phase retardation (r) 

imparted between the two orthogonal polarizations of the beam by the different optical 

elements in Fig. 2.12. The Jones calculus [7,22] will be used to make this calculation. 

The Jones calculus was developed in 1941 by R. C. Jones [22] and is a matrix method 

that can be used to calculate the effect a series of optical elements will have on the 

polarization state of a beam. The polarization state of the beam is represented by a two 

component vector (2 x 1 matrix) while each optical element is represented by a 2 x 2 

matrix. The basic physical assumption for the Jones calculus to be applicable is that each 

optical element performs only a linear transformation on the components of the 

polarization. In the Jones calculus, a matrix is calculated that represents the effect each 

optical element has on the polarization state of the beam. The matrices for all the optical 

elements are then multiplied in the order that the elements are encountered (Le. in our 

case as the modulator is traversed). The input polarization vector is then multiplied by 

the result of the matrix multiplication to determine the output polarization vector. 

In the remainder of this section, we will derive the Jones matrix that characterizes the 

net retardation (r) produced by the YCOB crystal shown in Fig. 2.12. This will illustrate 

the physical principles of the Jones matrix method as well as relating r for the crystal to 

the applied voltage. We will begin by discussing the propagation of light in a 

birefringent crystal plate. In general, a Jones matrix describes how a certain thickness of 

a birefringent crystal will add a net phase difference to the two orthogonal polarizations 

propagating through the crystal. When light propagates in a birefringent crystal, it can be 
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represented by a linear superposition of two eigenwaves [8]. The directions of the 

polarizations for these eigenwaves are orthogonal and will lie along the axes of a cross- 

section of the index ellipsoid as discussed in section 2.3.2. (In this, and the following 

derivations in this chapter, it will be assumed that there are no reflections and the optical 

elements are totally transmitting.) 

Let's consider a birefringent crystal plate with its dielectric axes oriented along x' 

and y' (where nxe # nyn) as in Fig. 2.13. ' Also imagine that a beam is impinging on the 

plate with its polarization components oriented along the x and y directions. We can 

express the input polarization in terms of a 2-component Jones vector (V) by 

v=f ) (2.108) 

where V, and V, are two complex numbers. V should be viewed as the components of 

the input electric field. To determine how much net phase difference the two components 

V, and V, acquire in traversing the plate, we first transform V into the prime frame using 

a coordinate transformation given by 

We transform into the prime frame because this is the frame in which the eigen- 

polarizations will propagate and will acquire their net phase difference [7]. The two 

waves Vxl and Vf will see different refractive index values ( nxO and ny8) and will 

therefore travel through the plate with different speeds. Because of the difference in 



Quarter-wave 

plate Babhet-Solei1 
compensator 

Input dielectric YCOB 

L 
output 
beam with 
polarization 

E out 

laser beam directions 

x Crystal's principal (r=- (parallel 
to z) 2 dielectric dielectric axis 

directions 

Figure 2.12. A transverse electro-optic YCOB modulator. In this case, the beam propagates along the crystal's x dielectric axis 
and the applied voltage is along the z dielectric axis. 
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Y 
Beam 

propagation 

Figure 2.13. A birefringent crystal plate with its dielectric axes ( x'and y') oriented as 
shown [7]. 

speeds one component is delayed relative to the other. This delay rotates the polarization 

of the emerging beam. We now calculate the polarization components of the emerging 

beam. Let n,. and ny be the refractive indices of the plate in the x'- and y' directions in 

Fig. 2.13. The polarization components of the incident beam in the prime frame 

( V,, and V,,, ) are related to the polarization components of the exiting beam in the prime 

frame ( Vi. and Vi8 ) by 

(2.110) 

where L is the plate thickness and h is the wavelength of the light beam [7]. The net 

phase delay or retardation (r) for the beam is found by taking the difference between the 

exponents in Eqn. (2.1 10) because the exponents represent the phase values and we want 

to know the value of the net phase diflerence between the waves. Therefore the net phase 
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difference (retardation) is equal to 

2xL r=(nx .  -nyt)- 
h 

(2.111) 

Eqn. (2.111) gives a general prescription for calculating the retardation of a 

briefringent plate (or optical element) if the indices nxa and nyl are known. We want to 

write Eqn. (2.110) in terms of r and so we will introduce a common phase factor for the 

x' and y' components of the polarization given by 

We can express Eqn. (2.1 10) in terms of r and p as 

(2.1 12) 

(2.113) 

We will ignore interference effects and therefore we can neglect the phase factor e-ip. 

The Jones vector for the polarization state of the emerging beam in the un-prime frame is 

then found by transforming back to x and y using 

(2.114) 

We transform back to x and y since in a typical situation we would use a polarizer 

aligned along either x or y to analyze the polarization state of the beam (as in Fig. 2.12). 

Combining Fqns. (2.109), (2.1 13), and (2.114) we can write the transformation for the 
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birefringent crystal plate as 

where W is referred to as the Jones matrix for the plate which is defined by 

w = R(-$)WoR($) 

where R(4) and W, are given by 

cos$ sin4 
-sin$ cos$ 

(2.1 15) 

(2.1 16) 

(2.1 17) 

and 

(2.1 18) 

Eqn. (2.1 15) can be used to calculate the Jones matrix for the YCOB crystal in Fig. 2.12. 

We will now use Eqn. (2.1 11) to find an expression for the phase retardation due to 

the YCOB crystal (T,M) in Fig. 2.12 that explicitly depends on the voltage applied to the 

crystal (Vqplid). We see from Eqn. (2.1 1 1) that is related to the difference in refractive 

indices in the directions of the two orthogonal polarizations. There are two effects that 

we will need to account for in applying Eqn. (2.1 11) to the YCOB crystal. First, there is 

the difference in n,,' and nza due to the natural (static) birefringence of the YCOB crystal 

and second, there is the modification of these indices due to the applied voltage through 

the linear electro-optic effect. 

W e  can use an. (2.97) to calculate the values for the refractive indices (static 
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birefringence + electro-optic modification) for the YCOB crystal in Fig. 2.12. Using 

Eqns. (2.99), (2.100), (2.103), and (2.105) to write out Eqn. (2.97) for the YCOB crystal 

with the applied electric field (Vqlid) in the direction shown in Fig. 2.12 we obtain 

?+ri3Ez x + 7 + r 2 3 E z  y2 + -+r33E2 z +2rS3Ezxz=1 (2.1 19) 
in:  ) [n: ) r . r 2  ) 

where n,, ny, and n, are the principal refractive indices of the YCOB crystal. Eqn. 

(2.1 19) tells us how the electro-optic effect modifies n,, ny, and n, in this case. Let's 

simplify the terms in Eqn. (2.1 19) to reveal the explicit change in the indices in the form 

of n = n, + An (Le. A,, in Eqn. (2.103)). If we identify the first coefficient of Eqn. (2.1 19) 

as 

nC; can be written as 

I 

n : = n , (1 + n q3E, )- 1 

(2.120) 

(2.121) 

We expect that n:rl3E << 1 [13], and so using (1 + x)" 3 1 + nx for small x, Eqn. (2.121) 

becomes 

Now similarly for n; and nZ we have 

n 

(2.122) 

(2.123) 

(2.124) 
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Using Eqns. (2.122) - (2.124) we can write Eqn. (2.1 19) as 

x2 y2 z2 

n:' n i2  "z 

- + - + 7 + 2r5,E,xz = 1 (2.125) 

We would like to now transform to a new coordinate system in which Eqn. (2.125) 

contains no mixed terms, Le. the system in which it is "diagonalized". This new 

coordinate system will define the principal axes of the modified index ellipsoid. We can 

use the coordinate transformation given by [7] 

x = x'cos0 - z'sin0 

z = x'sin0 + z'cos0 
(2.126) 

to diagonalize Eqn. (2.125). Performing this transformation on Eqn. (2.125) yields 

where in order for the xz term to vanish we require that tan20 be equal to 

2r53Ez 
1 1  

tan20 = 

(2.127) 

(2.128) 

We would like to note that for E, = lo6 V/m and r = 10 pmN, as for KDP, that 0 = 0.05' 

and so the tan0 term can be neglected in Eqn. (2.127). Therefore the expressions for n", 

n; , and n: given in Eqns. (2.122) - (2.124) are the values for the refractive indices of 

the YCOB crystal which includes the modifications due to the electro-optic effect. 
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We can now use Eqn. (2.1 11) to calculate the net phase retardation due to the YCOB 

crystal (rxd) in Fig. 2.12 as 

Inserting Eqns. (2.123) and (2.124) gives 

We will now write Eqn. (2.130) in a very useful form using Vapplied = E,d as 

(2.129) 

(2.130) 

(2.13 1) 

Eqn. (2.131) tells us the net phase retardation imparted on the beam by the YCOB crystal 

in Fig. 2.12 as a function of the applied voltage. It is useful and convenient to note two 

things about Eqn. (2.13 1). 

First, it is customary to refer to the term involving the electro-optic coefficients and 

the indices-cubed as the efiective electro-optic coefficient, reE. Therefore in this case r,ff 

is given by 

(2.132) 3 3 
Teff = (r33nz - run, 1 

Secondly, a quantity that will be very useful later is the value of the applied voltage that 

makes the second term on the right-hand side of Eqn. (2.131) equal to K (i.e. V,J. Setting 

the second term on the right-hand side of Eqn. (2.13 1) equal to K we have 
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(2.133) 

(2.134) 

This is called the "half-wave voltage" [7] and is the voltage that will rotate the 

polarization of the beam by - I(; . It is customary to speak of V, for configurations where d 
2 

= L, therefore in this case Vu is given by 

h vu = - 
rcff 

(2.135) 

2.6.5 Transverse YCOB moduZafors 

Now that we have rxd for the YCOB crystal in Fig. 2.12 we can calculate the Jones 

matrix for the crystal. Eqns. (2.1 16) - (2.1 18) with 41 = 45' gives the Jones matrix (Wxml) 

for the YCOB crystal as 

(2.136) 

The Jones matrices for the rest of the optical elements shown in Fig. 2.12 will be 

given without derivation for the sake of brevity but are readily derived using Eqns. 
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(2.116) - (2.118) [7]. Starting from left to right in Fig. 2.12 we have for the input 

polarizer 

n; 
2 

and the Quarter-wave plate ( I? = - ) 

(2.137) 

(2.138) 

The Babinet-Solei1 compensator in Fig. 2.12 is a device that can impart continuously 

variable phase retardation on the beam. It is basically composed of two calcite wedges 

that have their axes oriented at 90". The overlap of the wedges can be adjusted thereby 

changing the propagation length through the wedges, which varies the amount of phase 

retardation imparted to the beam. The Babinet-Soleil compensator will be used in the 

experiments in Chapter 5 to vary the transmitted irradiance through the YCOB 

modulators while a fixed voltage is applied to the YCOB crystal. "he particular Babinet- 

Solei1 compensator used in our experiments could produce phase retardation from 0 to 

67c. The Jones matrix for the Babinet-Solei1 compensator in terms of the compensator's 

adjustable retardation (rC) is 

r C  

r C  

cos- 
2 

2 
- isin - 

r C  - isin - 
2 ~ 

r C  cos - 
2 

(2.139) 
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The output polarizer has a Jones matrix given by 

Woutput polaliuizer =(' 0 0  o] 

and the Jones vector for the input polarization (GI-) in Fig. 2.12 is 

(2.140) 

(2.141) 

Now that we have the Jones matrices for all the optical elements in Fig. 2.12, we can 

calculate the output polarization bout =rYmt)) by multiplying the matrices in the 

following way 

E, out 

Multiplying the above matrices according to Eqn. (2.142) gives 

(2.143) 

The transmitted irradiance (I,) through the modulator in Fig. 2.12 (Le. through the 

output polarizer) can be calculated in MKS units using I, =E"CQEyout12 +IEzout12) as 
2 
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(2.144) 

This equation describes the transmitted irradiance through the modulator in terms of the 

electro-optic coefficients and the voltage applied to the crystal. If we write Eqn. (2.13 1) 

as 

Then Eqn. (2.144) can be written as 

(2.145) 

(2.146) 

It is reasonable to assume that VWkd << Vx (typical half-wave voltages for crystals 

range between 10 kV - 100 kV and our experiments will use voltages between 20 V and 

3 kv) in which case Eqn. (2.146) becomes 

Note that Eqn. (2.147) implies that the transmitted irradiance (Itnc) is a linear function of 

applied voltage (VqpIid).  

There are three other YCOB crystal orientations that could be utilized in a transverse 

electro-optic modulator. We want to know Itnr for the modulators with the crystal in these 
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three other orientations since they will also be experimentally investigated in Chapter 5. 

A similar procedure to that just given in deriving Eqn. (2.147) can be used to find 4, for 

these three other transverse YCOB modulators. Table 2.1 summarizes the results for all 

four transverse YCOB modulators. The quantities n i  and n i  in Table 2.1 are the 

electric field (Vqplid) modified values of the relevant principal refractive indices as 

described in Eqns. (2.122) - (2.124) and as used in Eqn. (2.129). r, is the Babinet-Solei1 

compensator retardation and is the crystal's static birefringence as defined in Eqn. 

(2.145). The crystal orientations (L and d) are given in terms of the crystal's dielectric 

directions. Note that only orientations along the crystal's dielectric axes will be studied. 

The equations for the transmitted irradiances (k) given in Table 2.1 will be used to 

analyze the data collected on the four transverse YCOB modulators in Chapter 5. 
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2.6.6 Longitudinal YCOB modulators 

Another modulator configuration we will study in Chapter 5 is a longitudinal 

configuration. A longitudinal configuration is one in which the propagation direction of 

the beam and the applied electric field (Vapplid) are parallel. An example of a 

longitudinal modulator we will consider is shown in Fig. 2.14. We would like to know 

the transmitted irradiance (k) through this modulator for two orientations of the YCOB 

crystal. We will not show the derivation of h, for the two longitudinal cases but the 

procedure is very similar to that in deriving Fn for the transverse cases. We give the 

results in Table 2.2. Note that for the longitudinal cases k is independent of the crystal 

length. The quantities n i  and n i  are the electric field (Vapplid) modified values for the 

relevant principal refractive indices. Tc is the Babinet-Solei1 compensator retardation and 

r, is the crystal's static birefringence similar to that defined in Wn. (2.145). The crystal 

orientations (L and d) are given in terms of the crystal's dielectric directions. The 

equations for the transmitted irradiances (k) given in Table 2.2 will be used to analyze 

the data collected on the two longitudinal YCOB modulators in Chapter 5. 



Qu arter-wave 
plate Babinet-Solei1 

Input dielectric compensator YCOB 

L 
output 
beam with 

Output polarization 
i7 out 

laser beam directions 
polarization \ 

polarizer plate 
(parallel 'Tc 

to z) (I-?) c dielectric axis 
dielectric 
directions 

Figure 2.14. A longitudinal electro-optic YCOB modulator. In this case, the beam propagates along the crystal's z dielectric 
axis and the applied voltage is also along the z dielectric axis. 
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2.7 Summary 

This chapter has discussed the fundamental concepts of nonlinear optics necessary to 

understand the experiments that will be conducted with the COB crystals. The nonlinear 

processes in the COB crystals that will be experimentally investigated in the next three 

chapters (3 - 5) are second harmonic generation, optical parametric oscillation, and the 

linear electro-optic effect. A mathematical formulation of these processes has been 

described. The equations derived in this chapter will be used to analyze the experimental 

data collected in Chapters 3 - 5. 
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Chapter 3 

First published as: 
"Nonlinear optical properties of LuCa~O(BO~)3, " Optics Letters, 26,217 (2001) 

J. J. Adams, C. A. Ebbers, K. I. Schaflers, and S. A. Payne, 

3.1 Introduction 

The GdCuO(BO3)3 (GdCOB) family of nonlinear optical crystals (Le. GdCOB, 

LUca40@03)3 (LUCOB), YCasO(BO3h (YCOB), and Gd,Y1-xC@(B03)3 (WYCOB), 

etc.) are known to be capable of second harmonic conversion of near infrared 

wavelengths [1-4]. GdCOB and the related crystals are relatively easy to grow, are not 

hygroscopic, and are easy to polish and optically coat. These crystals have already found 

potential application for frequency doubling and tripling of large aperture, high peak, and 

high-average power lasers [51. 

In a comparison of intracavity frequency doubling (SHG) of a Q-switched multimode 

laser operating at 1064 nm, a GdCOB crystal produced 1/2 the output power of an 

equivalent crystal of LiB305 (LBO) [6]. The reduction in SHG output was due to the 

approximately 5 times larger angular sensitivity of the critically phasematched GdCOB, 

leading to inefficient conversion of the higher order modes within the laser cavity. 

Intracavity frequency conversion requires a low angular sensitivity to allow efficient 

conversion of multimode sources, or to allow efficient conversion of continuous wave 

sources where a high quality beam mode is tightly focussed within the doubling crystal. 

Crystals capable of non-critically phasematched (NCPM) interactions are preferred in 

these instances because noncritical phasematching has inherently low angular sensitivity 

as was discussed in Chapter 2. 



86 

YCOB and GdCOB have type II NCPM SHG wavelengths of 1.017 and 1.2 pm, 

respectively for propagation down the y dielectric axis [2,7]. By growing the mixed 

crystal, Gd,Y I-xCa40(B03)3 (Gd,YCOB) with various ratios of gadolinium to yttrium, the 

noncritical wavelength can be tuned to a specific wavelength [8]. In general, the 

magnitude of the nonlinear coupling coefficient for non-critical type 11 interactions down 

the y dielectric axis in the COB crystals can be estimated to be between 0.30 - 0.35 p w  

[2]. Alternatively, type I NCPM SHG in GdCOB and YCOB is possible for propagation 

down the z dielectric axis. The type I NCPM SHG wavelengths for GdCOB and YCOB 

are 966 and 840 nm, respectively [9]. However, the magnitude of the nonlinear coupling 

coefficients (dil) for these type I NCPM interactions is not known since only the effective 

coupling coefficients (aff) for the criticaZZy phasematched processes have been measured 

[2,31. 

The growth and characterization of crystals isostructural to GdCOB and YCOB were 

explored for intracavity frequency conversion applications, with the goal of finding 

crystals with a smaller birefringence that would allow noncritical phasematching of 

wavelengths near 1047 nm, 1053 nm, or 1064 nm (emission wavelengths of Nd:yLF and 

Yb3+:Srs(POs)3F (Yb:S-FAP), Nd:Phosphate glass, and NdYAG, respectively). LuCOB, 

YCOB, and GdCOB exhibit decreasing xz principal plane birefringence (Le. In, - n,l) 

with an increase in the mean radius of the lanthanide ion [3,10]. The decrease in 

birefringence with increasing ion size is believed to be due to the increase in ion size 

distorting the crystal structure and as a result causing the highly birefringent borate 

groups (BO3) to change alignment [ 11,121. We have exploited this trend of decreasing 

birefringence with increasing mean radius of the lanthanide ion to extend the type I non- 
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critical wavelength as long as possible by completely substituting lanthanum for 

gadolinium in the GdCOB structure. (For the case of trivalent, octahedrally coordinated 

lanthanide ions, trivalent lanthanum has the largest mean radius [13].) Furthemore, 

because La3' has a closed-shell electronic structure (Le. no unpaired valence electrons) 

another attractive feature of incorporating it into the GdCOB structure is that the resulting 

compound (LaCaO(BO3)3) would have high transparency for wavelengths that extend 

from the visible down to its ultra-violet band edge. 

In this chapter, we report the successful growth and characterization of the new 

nonlinear crystal hca&(Bo3)3 (LaCOB). We also experimentally compare the 

nonlinear optical properties of LaCOB, GdCOB, YCOB, and Gd,YCOB relative to a 

standard suite of nonlinear optical crystals (mioPo4 (KTP), BaB2O4 (BBO), KD2P04 

(KD*P), and LBO). In section 3.2, we discuss the growth of LaCOB and the preparation 

of all the crystal samples studied in this chapter. Section 3.3 discusses the SHG 

experiments conducted with our set of ten crystals and presents the results for the 

effective coupling coefficients (lad) and angular sensitivities (PO). The calculation of 

two caefficients of the nonlinear optical tensor (dl2 and d32) for the COB crystals is also 

discussed. Section 3.4 describes results from experiments that estimate the temperature 

sensitivity (PT) of type I SHG in LaCOB. Section 3.5 summarizes the chapter. 

3.2 Sample preparation 

Large crystals of LaCOB were obtained using the Czochralski pulling method with 

careful alignment of the seed crystal along the preferred growth direction (the y dielectric 

axis) [14]. The material melts congruently and was grown with a pull rate of Imm/hr 

from a 3 inch diameter iridium crucible while rotating at 20 rpm. Typical growth sizes 
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were 2.5 - 3.0 cm diameters x 10 cm in length. The crystals were clear with minimal 

bubble core defects [14] perpendicular to the growth direction. The crystal structure 

(monoclinic) and the location of the y dielectric axis in the LaCOB boules were 

determined using x-ray diflEraction at LLNL. 5 mm3 samples for type I SHG were then 

cut for analysis. Transmission spectra were collected on the LaCOB samples using a 

Schimadzu Corp. model 3101 UVPC spectrophotometer. An unpolarized transmission 

spectrum for an uncoated 5.15 mm thick sample of LaCOB is shown in Fig. 3.1. The 

ultra-violet band edge occurs at -200 nm and the features in the 2400-3200 nm range are 

a combination of absorption by the borate groups and water impurities in the crystal [2]. 

As was discussed in Chapter 2, the COB crystals are monoclinic biaxial crystals with 

point group m symmem with the convention that m I b. The mutually orthogonal 

loo 
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Figure 3.1. Unpolarized transmission spectrum for an uncoated 5.15 mm thick sample of 
LaCOB at room temperature. 
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principal dielectric axes in these crystals are labeled (x,y,z). The refractive indices for 

light polarized parallel to the x, y, or z dielectric axes are n,, ny, and n,, respectively, with 

the convention that n, < ny < n,. The effective coupling coefficient (&f) for type I SHG 

in the xz principal plane of this crystal class is given by 

d, = d,,cos+ - d,,sin+ for+>V (3.1) 

where $ is the angle measured from the x dielectric axis in the xz plane, d12 (dla) and d3, 

(d3z) arc coefficients of the nonlinear optical tensor, and V is the optic angle measured 

from the acute bisectrix (x dielectric axis). 

A group of ten crystals were studied and the effective coupling coefficients (den) and 

angular sensitivities (Po) for SHG at 1064 nm were experimentally determined as shown 

in Table 3.1. The phasematching directions were taken from the literature or calculated 

using Sellmeier equations found in the literature [2,3,15,16]. The angles specified for the 

different crystals in Table 3.1 are according to the conventions discussed in Chapter 2. 

The various samples were obtained as follows: 5 mm3 cubes of YCOB were cut from a 

Czochralski grown boule (Crystal Photonics, Fl) at +57" and -57" (relative sign) from the 

x dielectric axis in the xz plane. The faces of these YCOB cubes were uncoated and 

polished to within 30 seconds of parallel. The 5.09 mm GdCOB sample was 

commercially grown (Crismatec, France), antireflection coated, and cut for maximum 

second harmonic conversion at 1064 nm in the xz plane. A 15 mm long commercially 

grown sample of GdCOB, originally cut for maximum conversion, was subsequently 

recut and polished at LLNL, producing a 3.06 mm sample for phasematching on the 

opposite side of the x dielectric axis in the xz plane. We procured a Czochralski grown 
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boule of Gd,YI.,C~O(BOJ)~ from Crystal Photonics Inc, FL. The Gd to Y ratio (x = 

0.275) was adjusted so that type 11 non-critical phasematching at 1064 nm occurred for 

propagation down the y dielectric axis. A single 3.75 mm sample of LaCOB was 

prepared with faces approximately perpendicuIar to the phasematching direction for t w  

I SHG at 1064 nm in the xz plane. Phasematched type I SHG at 1064 nm in LaCOB was 

subsequently determined to occur at 80.1 degrees from the x dielectric axis in the xz 

principal plane. 

The nonlinear crystals we used as reference standards were KTP (Crystal Associates, 

NJ), BBO (Inrad, NJ), KD*P (Inrad, NJ), and LBO (Fujian Castech, PRC). These 

crystals were commercially grown and all antireflection coated except for the KD*P. 

33  Angle-tuned phasematched SHG experiments 

3.3. I Eflective coupling coefficients (d& and angular sensitivities (pd 

The effect of wavevector mismatch on the generated 20 irradiance for all 10 of the 

crystals shown in Table 3.1 was measured as a function of angle from the phasematching 

direction. We measured Ih(A6) vs. A6 using the experimental apparatus shown in Fig. 

3.2. We employed a polarized 0.5 W single transverse mode C W  Nd:YAG (1064 nm) 

laser and synchronous lock-in amplifier detection. The quartz polarization rotator was 

used to rotate the polarization of the Nd:YAG laser from horizontal to vertical. We 

collected 12a(A6) vs. A0 data on our collection of crystals, systematically repeating the 

measurements until we had collected four complete data sets. Fig. 3.3 shows an example 

of the SHG data collected on the 3.75 mm LaCOB sample. Note how the data in Fig. 3.3 

clearly reveals the sinc’ behavior predicted by Eqn. (2.52). Fig. 3.4 shows examples of 



91 

Collimating lens 
f = +SI2 mm 
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Figure 3.2. Experimental setup to measure the SHG response as a function of angle. 

the SHG data collected on the 5.1 1 mm YCOB sample and the 5.09 mm GdCOB sample. 

The LaCOB data is shown again in Fig. 3.4 for comparison. The form of the curves in 

Figs. 3.3 and 3.4 is typical of the data collected for all the crystals. The curves in Fig. 3.4 

-40 -30 -20 -10 0 10 20 30 40 
A0 (mrad) 

Figure 3.3. 2 0  emission for type I SHG at 1064 nm as a function of angle from the 
phasmatching direction in the xz plane for LaCOB. b,,, is the phasematching angle 
measured from the x dielectric axis. 
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Figure 3.4. Normalized 20 emission for type I SHG at 1064 nm as a function of angle 
from the phasmatching direction in the xz plane for JACOB, GdCOB, and YCOB. 
the phasematching angle measured from the x axis for each crystal. 

is 

have been normalized by the value of the peak response for the YCOB crystal and by the 

square of the lengths of the samples. Therefore the ratio of the peaks in Fig. 3.4 

represents the square of the ratio of the corresponding I&&. The lines through qach of 

the data sets in Figs. 3.3 and 3.4 are the corresponding numerical fits of Eqn. (2.52). 

Though the peak 2 0  response of JACOB is the smallest of the three crystals, its angular 

sensitivity (i.e. the inverse of the widths in Fig. 3.4) cai be seen to be about one-half that 

of GdCOB and one-third that of YCOB. 

The absolute values for the 4;s given in Table 3.1 for all of the crystals except KTP 

were calculated from the ratio [ 151 of the peak 20 signal produced by each sample and 

that of KTP (&E = 3.2 pmN [ 161). Our &E values for BBO and KD*P each agree within 

1% of the values found by Eckhardt, et al. [16]. The c&ff value for LBO agrees within 2% 

of that found by Velsko, et al. [ 151. Given the excellent agreement between our 
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Crystal, Type Length 
of (mm) 

Phasematching 

KTPJI 5.17 

BB0,I 6.78 

Table 3.1. Experimentally determined nonlinear crystal properties for 
SHG at 1064 nm. 

Phase-matching 
Direction 

(0.49 (degrees) 

(65.790) 

(22.8,O) 

1 &td Angular 
( P W )  Sensitivity 

(cm-rad)' 

33 573 f 56 

Be 

KD*PJ 

LBOY 

GdCOSJ 

GdCOBJ I 3.06 I (90,70)t 

29.96 (36.6,45) 

SA3 (69-6990) 

5.09 (90,-70)t 

YCOBJ I 5.11 I (90,-57lt 

'For each set of materials, the choice for the relative 

1.97 f 0.12 I 10110 f 1082 
0.21f0.02 I 3455f511 
0.67f0.05 I 562f25 

0.78f0.06 I 2704f156 
038 f .04 I 2690f161 

1.12 f 0.07 I 4548 f 277 
~~ 

0.69f0.05 I 4385f440 
052f0.05 I 1224f184 
037f0.04 I 145f36 

I ;ign of the angles is arbitrary a n i  
is only meant to differentiate between the relative orientation of the samples. 

measurements of 

believe our method for determining & i s  to be highly accurate. 

for BBO, KD*P, and LBO, and those found in the literature, we 

The angular sensitivity (go) for each crystal in Table 3.1 was determined from a 

numerical fit of Eqn. (2.52) (Ak = peA9) to the corresponding data set. The angular 

sensitivity for type I SHG at 1064 nm in LaCOB is determined to be about one-half that 

of GdCOB and about twice that of KTP or LBO. Actually, since the angular sensitivity 

determined for LBO is for a type II process the corresponding angular sensitivity for a 

type I process in LBO would have approximately the same angular sensitivity as LaCOB. 

(A type II process has an angular sensitivity that is one-half the angular sensitivity of the 



94 

corresponding type I process. This can be seen by comparing the derivatives of Ak with 

respect to angle (A@ for the type I and type II processes [ 171.) 

We also conducted type I SHG experiments at 1047 nm with LaCOB in order to 

evaluate its type I NCPM wavelength for propagation down the z dielectric axis. By 

knowing the phasmatching angles for SHG at 1047 and 1064 nm, we will be able to 

determine the NCPM wavelength through extrapolation (as we will discuss shortly). The 

data in Fig. 3.5 for JACOB at 1047 nm was measured by replacing the Nd:YAG laser in 

Fig. 3.2 with a 0.35 W NdYLF laser. The angle for maximum SHG at 1047 nm in 

LaCOB was determined to be 84.5' from the x dielectric axis in the xz plane. The data 

for LaCOB in Fig. 3.5 allows us to determine values for derr and Pe for type I SHG at 
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Figure 3.5. Normalized 20 emission for type I SHG at 1047 and 1064 nm in LaCOB and 
for type I SHG at 1064 nm in GdCOB as a function of angle-from the phasematching 
directions in the xz plane. 

1047 nm. We determine a I&d and of 0.37 f 0.04 pmN and 716 f 107 (cm-rad)-', 

respectively for type I SHG at 1047 nm in the xz plane of LaCOB. Notice that as the 
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magnitude of the phasematching angle increases in LaCOB (i.e. @ = 80.1" for 1064 nm 

SHG and 0 = 84.5' for 1047 nm SHG) the angular sensitivity (Po) decreases (Le. the 

widths of the curves in Fig. 3.5 increases). This decrease in the angular sensitivity (Po) 

occurs because the interaction is getting closer to being NCPM (i.e. @ = 90'). 

Fig. 3.6 shows the change in the type I phasematched SHG wavelength as a function 

of angle from the x dielectric axis for LaCOB, GdCOB, and YCOB. The curves for 

GdCOB and YCOB were calculated from their respective Sellmeier equations from Ref. 

[3]. The two points for LaCOB at 80.1' and 84.5' were experimentally measured. The 

point at 90" was then extrapolated by fitting a phasematching curve to the LaCOB data 

Figure 3.6. The change in the type I phasematched SHG wavelength as a function of 
angle from the x dielectric axis for JACOB, GdCOB, and YCOB. 

calculated using the Sellmeier equations for GdCOB with an adjusted birefringence. 

Therefore from the extrapolated y-intercept for LaCOB shown in Fig. 3.6, we estimate 

the type I NCPM SHG wavelength to be 1042 f 1.5 nm. 
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3.3.2 Calculation of the absolute nonlinear coupking coefficients (dl2 and d32) 

Because of the symmetry of the index ellipsoid, phasematching occurs for t p  I 

interactions in the xz principal plane of the COB crystals along two symmetric 

propagation directions, e and -9. As can be seem from Q n .  (3.1), the effective coupling 

coefficient (&m) along the two symmetric directions is not necessarily equivalent unless, 

as indicated in Ref. [18], one of the contributing nonlinear optical tensor coefficients (d12) 

has zero magnitude. By measuring the effective coupling coefficients (I&& for the two 

symmetric propagation directions in GdCOB and YCOB, we are able to determine the 

magnitudes of the two nonlinear optical tensor coefficients, d12 and d32. As seen in Table 

3.1, the absolute values for & measured at k7Oo in GdCOB (i.e. for the two symmetric 

directions) are 0.38 and 0.78 pmN, respectively. The absolute values for & measured at 

f57O in YCOB are 0.69 and 1.12 pmN, respectively. The value for the larger i&d for 

GdCOB is in agreement with the value presented in Ref. [19]. The smaller &i value 

that we measure for YCOB is in agreement with the value given in Ref. [18]. However, 

the fact that the two absolute values for defF are significantly different for the two 

positions in either GdCOB and YCOB contradicts the assertion in Ref. [18] that the 

contribution from dl2 is nearly zero. 

The two sets of &n values for GdCOB and YCOB in Table 3.1 allow us to calculate 

absolute numeric values for d12 and d32 using Eqn. (3.1). The absolute values for d12 and 

d32 determined for GdCOB and YCOB are shown in Table 3.2. Note that the d12 values 

for GdCOB and YCOB are equal within the experimental uncertainty and likewise for the 

d32 values. 

If the absolute values for d12 and d32 for YCOB are used in Eqn. (3.1) to calculate the 
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Id121 
( P W )  

Crystal 

GdCOB 0.22 f 0.05 

YCOB 0.26 f 0.04 

Id321 
( P W  

1.72 f 0.13 

1.69 f 0.17 

maximum for type I SHG in LaCOB at 1064 nm (i.e. 141 = 80.1'), we obtain I&d = 

0.55 pmN which is identical within the experimental uncertainty to our measured value. 

A similar calculation for type I SHG in LaCOB at 1047 nm (Le. 141 = 84.5') gives a 

maximum of 0.41 pmN, which also agrees with our experimentally determined 

value. Therefore from these measurements and calculations, we conclude that the 

absolute values for the tensor coefficients d12 and d32 vary very little between GdCOB, 

YCOB, and LaCOB. Therefore the magnitude for the effective nonlinear coupling (I&& 

for any type I SHG interaction in the xz principal plane in any of the three crystals can be 

determined using the values given for dl2 and d32 in Table 3.2 and Eqn. (3.1). 

3.4 Thermal sensitivities (PT) for SHG 

We studied the variation of type I SHG at 1064 nm in the 3.75 mm LaCOB sample 

over the temperature range of 20 to 100 'C. The data was collected using a sample holder 

whose temperature could be controlled (increased or decreased). The temperature 

variable sample holder was attached to the rotation stage in Fig. 3.2. Starting at room 

temperature, the sample was first tuned in angle to the phasematching direction and then 

the temperature of the sample was varied while the SHG (20) irradiance was measured. 

The data collected for LaCOB is shown in Fig. 3.7. Thermal tuning data was also 
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collected on the LBO sample and is shown in Fig. 3.7 for comparison. 

The data in Fig. 3.7 for LaCOB reveals that the SHG irradiance was essentially 

constant from 20 - 100 "C. The insensitivity of LaCOB over this broad range of 

temperatures is remarkable. The thermal insensitivity of LaCOB made it difficult to 

discern clear sincz behavior in the data. We do however show fits of Eqn. (2.52) to both 

sets of data in Fig. 3.7 (Le. the solid lines) from which we determine a value for PT of 1.2 

. (cm-"C)-' for LBO and we estimate an upper bound to pT of 0.1 (cm-"C)-' for LaCOB. 

Therefore type I LaCOB is at least 10 times )ess thermally sensitive than type II LBO. 

Sample temperature 

Figure 3.7, Experimentally measured variation of the 20 (532 nm) irradiance with 
temperature for type I SHG in LaCOB and type II SHG in LBO. 

3.5 Summary 

We have successfully grown the new nonlinear crystal lanthanum calcium oxide 

borate (LaCOB) and characterized its nonlinear optical properties. A l&fd of 0.52 f 0.05 
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pmN and an angular sensitivity of 1224 f 184 (cm-rad)-' for type I SHG at 1064 nm in 

LaCOB was determined relative to that of KTP. The d12 and d32 coefficients of the 

nonlinear optical tensor for LaCOB, GdCOB, and YCOB were determined to have 

absolute values of 0.26 f 0.04 pmN and 1.69 k 0.17 pmN, respectively. This implies 

that the 4~ values for these three materials vary primarily due to differences in their 

birefringence (Le. differences in their phasematching angles). From phasematching angle 

measurements for type I SHG at 1064 and 1047 nm, we predict that LaCOB has a type I 

non-critically phasematched SHG wavelength of 1042 f 1.5 nm. We also determined 

experimentally that the thermal sensitivity of type I SHG at 1064 nm in LaCOB is less 

than 0.1 (cm-OC)-'. Due to its low angular and thermal sensitivities, LaCOB may have 

potential use in high-average power external and intracavity frequency doubling 

applications. 

W e  set out to find new crystals with type I NCPM SHG wavelengths near 1050 nm. 

Our measurements indicate that LaCOB has a type I NCPM SHG wavelength of 1042 f 

1.5 nm. Unfortunately the corresponding coupling coefficient (d12) will have a 

magnitude of only 0.26 pmN. However, several important uses may exist for the 

relatively large d32 coefficient (1.69 p W )  determined for the COB crystals. One such 

application may be found in a NCPM type 11 optical parametric amplifier or oscillator. 

We will investigate this possible use for the COB crystals in the next chapter. Also, if 

there exists a correspondingly large electro-optic coefficient (rs) ,  then the COB crystals 

may also have application as an electro-optic material. We will investigate this 

possibility in Chapter 5. 
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potential use in degenerate non-critically phasematched mid-infrared 

parametric oscillators 

4.1 Introduction 

Sources of tunable coherent radiation in the 1.5 - 3.5 jun range have wide 

applications in the areas of remote sensing, LIDAR, and the spectroscopy of organic and 

inorganic compounds [l]. Optical parametric oscillators (OPO) based on nonlinear 

crystal media are common devices for generating moderate energy, narrow linewidth, and 

high beam quality radiation tunable in the 1.3 - 4.5 jun region [2]. Crystals used in mid- 

infrared OPO’s generally have nonlinearities 22 pmN, good thermal conductivity ( ~ 1 . 5  

W/mK), high damage thresholds (-10 J/cm2), low bulk absorption (4.01 cm-’), are non- 

hygroscopic, and can be fashioned into lengths -5 cm. Nonlinear crystals for optical 

parametric amplifier (OPA) and OPO applications should be robust mechanically in the 

sense that they can be easily handled and polished and they should readily accept a high 

quality optical coating. Crystals with low spectral and angular sensitivities are 

particularly advantageous since in high peak power applications the conversion efficiency 

can often be improved by using shorter pump pulselengths and focusing the pump beam 

into the nonlinear crystal. However, in a focused arrangement only crystals with a low 

angular sensitivity will efficiently convert the pump beam. Temperature insensitivity is 

also desirable, since in high-peak and high-average power applications even small bulk 

background absorption causes significant thermal deposition in the nonlinear crystal, 
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which can cause thermal de-tuning and fracture the crystal. Especially useful are crystals 

that are non-critically phasematched (NCPM). NCPM mitigates walk-off effects while 

having very low angular sensitivity. Crystals which, for pumping at 1064 nm, are NCPM 

- and have signal and idler wavelengths that are degenerate (Le. hs = hi = 2128 nm) could 

be utilized to convert a high power 1064 nm pump laser into a high power 2128 nm laser. 

Two nonlinear crystals often employed in OPA and OPO’s are LiNbO3 and LBO. 

LiNbO3 is a uniaxial crystal with a high transparency range (0.4 -5.5 p) and an 

effective coupling coefficient of about 6 pmN for degenerate optical parametric 

generation at 1064 nm. Though Libho3 has a large coupling coefficient, a relatively low 

surface damage threshold of 3 I/cm2 limits its use in high peak power applications. LBO 

is well suited for high peak power applications because of its high damage threshold of 

about 10 J/cm2 and because its type I NCPM wavelength can be tuned with temperature 

from 900 - 1700 nm. LBO however is expensive to grow, somewhat suffers from 

susceptibility to moisture, and typically has a low temperature acceptance. 

In Chapter 4, an exploratory study of the GdciQo(Bo3)3 family of nonlinear crystals 

was conducted which characterized their type I SHG nonlinear coefficients, angular 

sensitivities, and thermal sensitivities. They were found to all possess the same value for 

the d32 (= 1.69 pmN) nonlinear tensor coefficient. This coefficient could also be utilized 

for type 11 non-critically phasematched sum frequency generation (SFG) down the x 

dielectric axis which, combined with their low thermal sensitivity, would imply that these 

crystals might have utility in a high-average power NCPM OPA or OPO. In addition to 

being NCPM, one of the materials, YC%O(B03)3 (YCOB), GdCaO(B03)3 (GdCOB), or 

L a c ~ o ( B 0 ~ ) ~  (LaCOB), might have the appropriate birefringence that gives equal 
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(degenerate) signal and idler wavelengths for 1064 nm pumping. 

The work in this chapter explores the possibility of using the COB crystals (YCOB, 

GdCOB, LaCOB) in a degenerate non-critically phasematched OPO with pump 

wavelengths in the 800 to 1300 nm range. In the first part of this chapter, we 

theoretically evaluate some of the important parameters for an OPO based on YCOB. 

For example, using Sellmeier equations taken from the literature, we calculate the NCPM 

signal and idler wavelengths for a YCOB based OPO as a function of pump wavelength, 

Since it would be ultimately desired to use these materials in a noncritically 

phasematched degenerate OPO (Le. equal signal and idler wavelengths), the threshold for 

operation at the calculated degenerate wavelength is then estimated. The required 

threshold value is a good indication as to the practicality of such a device. 

In the second part of this chapter, we describe our experimental technique to measure 

the NCPM degenerate wavelengths for an OPO based on YCOB. We will use SHG to 

determine the NCPM degenerate OPO wavelengths. The degenerate OPO process is 

oopopmp + = mdlw, and note that this 

process in reverse is 2 % ~  3 pump which can be identified as SHG for a 

fundamental wavelength of ai@ Therefore by performing an SHG experiment that 

determines the NCPM SHG wavelength (Le. where a H G  = 2 a i ~ )  we will determine the 

NCPM degenerate OPO wavelength. The SHG experiments utilized the signal from a 

tunable LiNb03 OPO as a pump source. The tuning range of the LiNbO3 OPO was 

constrained by the available mirrors that were used to construct it and so, consequently, 

the SHG experiments on YCOB were conducted only over a limited range (1680 - 1900 

nm) of generated wavelengths. Encouraging preliminary results from the SHG 

+ ma = a,@, since at degeneracy 
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experiments on YCOB, LaCOB, and GdCOB are presented and suggest refinement of the 

experiment and continued measurements. 

4.2 Theoretical estimates of the type I1 NCPM OPO wavelengths, OPO threshold, 

and SHG efficiency and wavelength sensitivity for YCOB 

4.2.1 Non-critical OPO phasematching conditions 

The nonlinear process will only be efficient if the process is phasematched. As 

discussed in Chapter 2, section 2.4.2, phasematching can be described as conservation of 

momentum. Eqns. (4.1) and (4.2) express, mathematically, the conditions for 

conservation of energy and momentum (Le. Ak = 0) for a type II OPO process down the x 

dielectric axis in a negative biaxial (YCOB) crystal. In Eqns. (4.1) and (4.2), &, &, and 

1 1 1  +- -=- 
hp A s  hi 

(4.1) 

X, are the pump, signal, and idler wavelengths, respectively and n,, and n, are the principal 

refractive indices at the wavelengths specified in the y and z directions, respectively. The 

wavelengths that satisfy Eqns. (4.1) and (4.2) obviously depend on the values of the 

refractive indices of the crystal. The refractive indices for YCOB and GdCOB have been 

determined by Ref. [3] in terms of Sellmeier equations. Therefore in section 4.2.3 using 

Sellmeier equations for YCOB, we will look for wavelengths that satisfy Eqns. (4.1) and 

(4.2). 
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4.2.2 Sellmeier equations 

As was stated in the last section, Sellmeier equations will be used in the estimate of 

the type II non-critically phasematched OPO wavelengths (Le. signal and idler for pump 

wavelengths between 800 - 1300 nm) for propagation along the x dielectric axis in 

YCOB. Sellmeier equations for YCOB were derived by Ref. [3] and are given in Eqns. 

(4.3) - (4.5). The wavelength values used in Eqns. (4.3) - (4.5) are to be expressed in 

microns (pn). If the phasematched wavelengths for YCOB resulting from calculations 

using these Sellmeier equations are > 1.5 pm, they should only be regarded as rough 

estimates since these Sellmeier equations were experimentally derived by Ref. [3] using 

wavelengths I 1.3 pn. 

4.2.3 Non-critically phasematched wavelengths 

The signal and idler wavelengths satisfying Ak = 0 for pump wavelengths in the range 

800 - 1300 nm were calculated with standard spreadsheet software using Eqns. (4.1), 

(4.2), (4.4), and (4.5). Fig. 4.1 shows the result of the calculation for YCOB. The 

calculation yields phasematched signal and idler wavelengths of 2.08 pm and 2.178 pm, 
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respectively, for a pump wavelength of 1.064 pm. Also, the values for the degenerate 

wavelengths can be determined from the crossing point of the curves in Fig. 4.1. me 

estimated degenerate signal and idler wavelengths are h, = h, = 2100 nm and 3L-p = h,/2 = 

1050 nm. 
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Figure 4.1. Calculated signal and idler wavelengths for type II SFG for pumping down 
the x dielectric axis in YCOB. The e m r  bar shows the uncertainty to the degenerate 
point for an average uncertainty to the In, - nyl birefringence of about 0.004. 

We would like to estimate the uncertainty in the wavelength of the degenerate point 

in Fig. 4.1 since we don't expect the Sellmeier equations to be very accurate in this 

wavelength region. An estimate of the uncertainty to the degenerate wavelength will give 

us an idea of the possible tuning range that will be needed from our pump laser for the 

SHG experiments. Therefore to estimate this uncertainty, the variation of the degenerate 

point with dzflerences in the In, - nyl birefringence (i.e. A(An)) in the Sellmeier equations 
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was calculated. It was found that for an increase and decrease in the Inrn,l birefringence 

in the Sellmeier equations of M.005 and -0.003, respectively, the degenerate point (i.e. 

the crossing point in Fig. 4.1) shifted to pump wavelengths of 0.87 pm and 1.21 pm, 

respectively. The error bar on Fig. 4.1 represents this total shift. An uncertainty of about 

0.004 to the birefringence in the Sellmeier equations is not that unreasonable because 

when Sellmeier equations for YCOB from different researchers [34] are compared it is 

found that the difference in their In, - nyl birefringence at 2.1 pm is about 0.003. 

Therefore, the pump source for our SHG experiments should ideally have a tuning range 

from about 1.7 - 2.4 pm. 

4.2.4 Degenerate OPO threshold estimafe 

A strong indicator of the feasibility of utilizing YCOB in a degenerate -2 pm OPO 

would be the value of the OPO threshold necessary to obtain oscillation from this 

material. The pump irradiance required to reach oscillation threshold in a continuous- 

wuve degenerate singly resonant oscillator (SRO) can be calculated using Eqn. (2.91). 

Eqn. (2.91) is for the case of plane waves, perfect phasematching, and an un-depleted 

continuous-wave pump. Using the following parameter values, 

n = refractive index for YCOB (values for the signal, idler, and pump wavelength are 
assumed to be equal) = 1.7 
c = 3 x 1o'O cm/s 
~ . 1 = & = ~ . 2 = & = 2 . 1  x 10"cm 
R = reflectivity of the output coupler at the signal wavelength= 0.98 
d = d32 = 4.034 x 
L =  1.78 cm 

esu = 1.69 pmN 

the oscillation threshold for a YCOB OPO is estimated to be 3.22 MW/cm2. A similar 

' calculation for a 1.78 cm LiNbO3 crystal where d = 6 pmN and n = 2.2 yields a threshold 
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of 580 KW/cm2. Note the threshold value for the LiNb03 crystal is about 6 times less 

than for YCOB. The lower threshold for LiNb03 is due to its larger coupling coefficient 

It is also desirable to estimate the threshold for a pulsed OPO based on YCOB since 

relatively high pump intensities can be achieved with Q-switched lasers. The threshold 

fluence for a degenerate pulse-pumped YCOB OPO can be calculated using the 

expression developed by Brosnan and Byer [5] given in Eqn. (2.92). Using the following 

parameter values, 

z = l/e2 temporal pump pulselength = 10 ns 

K = nonlinear coupling constant for YCOB = 
8n2d& 

h,hinsnin ,,E,c 

a' = (for q, = o, = pump or signal g, = signal spatial mode coupling coefficient = 

beam spot sizes = 2 mm) = 0.5 
L = effective parametric gain length = YCOB crystaI length = 1.78 cm 
L = optical cavity length = L'(physical cavity length) + (n - l)t(physical crystal length) 

Po signal noise power 
a = YCOB crystal absorption coefficient @ 2100 nm = 0.067 cm-' 
t = YCOB crystal length = 1.78 cm 
R = reflectivity of the output coupler @ 2100 nm = 0.98 

m; +a; 

-= '' power E lOI4 (determined in general by Brosnan and Byer) 

&fi = d32 = 1.69 x 10 -I2 mN 

n ,=n i=np=n=  1.7 
e,, = 8.8542 x 10- C s /kg m3 

L '=8cm 

h,=h,=2100x 1 0 - ~ m  

c=3x108m/s  
12 2 2 

an estimate for the threshold fluence is calculated to be 8.07 J/cm2. For comparison, the 

threshold pump fluence for a LiNbO, OPO operating at degeneracy (i.e. h, = 2128 nm) 

using a 1.78 cm long crystal is calculated with Eqn. (2.92) to be 1.08 J/cm2. The Limo3 
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OPO threshold is about 8 times lower than that for YCOB owing to the much larger 

and lower background absorption for LiNb03. 

The threshold fluence of 8.07 J/cm2 for YCOB corresponds to an irradiance of about 

800 MW/cm2 (i.e. using 10 ns pulses). This value for the required pump irradiance is 

readily obtainable with a Q-switched laser. The damage threshold for YCOB was 

estimated experimentally at 1064 nm using 10 ns pulses [6] to be about 30 J/cm2. This is 

well above the calculated threshold fluence of 8.07 J/cm2 which implies that threshold 

could be achieved without damaging the YCOB crystal. 

4.2.5 SHG efficiency esfimate 

SHG experiments were planned for the COB crystals to precisely evaluate their 

degenerate OPO pump wavelengths. Before beginning the experiments it makes logical 

sense to predict the level of the SHG signal that would be produced by the COB crystals 

so that we can determine a priori if the signal will be detectable and what type of detector 

we will need. An efficiency estimate for SHG for perfect phasematching in YCOB down 

the x-axis was calculated using Eqn. (2.54) written in MKS units as, 

where, 

120 = generated SHG irradiance at 1050 nm 
11, = lo pump power at 2100 nm -0.5 mJ/((4 ns)( ~ ( 2 . 0  mm)2)) (typical irradiance from 
a LiNbO3 OPO) = 9.94 GW/m2 
d,,= d32 = 1.69 x 
L = crystal length = 0.0178 m 
E,, = 8.8542 x 10- C s k g  m3 

td'v 

12 2 2 
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c=3x108m/s 
nlw= nzO= 1.7 
hZO = 1050 x lo9 m 

inserted into Eqn. (4.6) gives r\,n = 0.0125. This implies about a 1.3% efficiency for 

SHG. A 2 0  energy of 6.25 pJ can be calculated for this 1.3% efficiency from 0.5 mJ of 

lo pump energy. This level of SHG energy was encouraging experimentally because it 

can easily be measured with a Si detector. 

Thus given the results of these calculations, the decision was made to determine if the 

1.6 - 2.4 pm range contained the type II noncritically phasematched SHG wavelength 

for YCOB. 

4.2.6 Wavelength sensitivity estimates for YCOB and EM03 

Our SHG experiments will involve measuring the SHG response of the crystals as a 

function of the pump wavelength. It would be interesting to know what to expect for the 

wavelength sensitivity (PA) for the COB crystals since this quantity should be directly 

observable from the experimental data. We can calculate PA using the Sellmeier 

equations given in Eqns. (4.3) - (4.5) and Eqn. (2.72) specified with respect to the pump 

-. wavelength. The expression for Ak used to calculate PA will be that which describes type 

II SHG in the xy principal plane in YCOB. Eqn. (4.7) describes Ak as a function of 

refractive indices and wavelength for this process as, 

where n&) is given by, 



with 8 being measured from the y dielectric axis. We will choose to calculate p k  at 1725 

nm for two reasons. First, because this wavelength is within the range of degenerate 

wavelengths for YCOB that we previously calculated, and secondly, because it is on the 

short wavelength side of the range which is where the Sellmeier equations are probably 

most accurate. The wavelength sensitivity, defined by &n. (2.72), can be seen as the 

slope of Ak as a function of XI,. We will start by setting Ak equal to zero at 1725 nm and 

calculating values for Ak for wavelength increments of 3.50 nm about 1725 nm (i.e 

calculating Ak at 1675 nm and at 1775 nm). f3a will then be calculated using (Ak(1775 

nm) - &(I675 nm))/lOO nm. The result of the calculation yields a value for pa of 0.82 

(cm-nm)-' for YCOB. We would like to note two things about this calculation. First, the 

choice that Ak = 0 at 1725 nm implies that 

2ny(862.5nm)=(n,(1725 nm)+ny(1725nm))=3.4367348 (4.9) 

This value is assumed for both lo terms that occur in the calculation for Ak on either side 

of Ak = 0. This is a reasonable assumption since there is no a priori reason that the 

difference between ny and n, for wavelengths in the range 1600 - 1800 nm would be 

anything but relatively constant. Secondly, the wavelength range of 100 nm, over which 

PA. was calculated, was chosen arbitrarily, however as a check, the range was decreased to 

10 nm and a less than 10% change in was seen. 

As a comparison to our calculated value for for YCOB and for reference for our 
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coming experiments, bk was calculated for LiNbOa in a similar manner. A value for PA 

of 6.63 (cm-nm)-' was calculated for LiNb03 for the case of type I SHG in the y~ 

principal plane for phasematching at 1750 nm. This value for LiNb03 is about 8 times 

that for YCOB. Therefore, according to Eqn. (2.73), we expect the SHG response for our 

YCOB crystal to have about 20 times the width in wavelength as that for the LiNbO3 

crystal. 

4 3  Type 11 non-critidy phasematched SHG experiments 

4.3.1 General descn'ption of the experimen fa1 procedure 

From the phasematched wavelengths shown in Fig. 4.1, we expect the COB crystals 

to have phasematched fundamental SHG wavelengths somewhere between 1.7 and 2.4 

pn. In order to measure the phasematched SHG wavelengths, we need a tunable source 

that emits in this wavelength range. A LiNbO3 OPO pumped by a Q-switched NdYAG 

laser can provide tunable output from approximately 1.4 - 4.0 p. Tuning the LiNbO3 

OPO is usually accompIished by varying the angle of the LiNbO3 crystal in the OPO 

cavity. Therefore, we will first setup a LiNbO3 OPO pumped by a commercial Nd:YAG 

:laser and characterize its tuning range. SHG experiments will then be conducted down 

the x dielectric axis of the COB crystals using the tunable signal from the LiNbO3 OPO. 

Fig. 4.2 shows a schematic of the SHG experiment utilizing the tunable LiNbO3 OPO and 

a COB crystal to illustrate our basic experimental technique. 
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Figure 4.2. Schematic diagram of the experiment to measure the non-critically 
phasematched SHG wavelengths for propagation along the x dielectric axis in the COB 
crystals. 

4.3.2 Construction and churacterizcrtion of a tumble Limo3 OPO 

The first part of the experimental work was to construct, successfully operate, and 

characterize a tunable L W 3  OPO. A diagram of the LiNbo3 OPO and its pump laser 

is shown Fig. 4.3. The actual LiNbO3 OPO was constructed using two flat CaF2 mirrors 

(as can be seen in Fig. 4.3) that were obtained in the laboratory from a decommissioned 

experiment. The input coupler (IC) to the OPO was 90% transmissive at 1.064 pm and 

40 - 60% transmissive from 1.5 - 2.0 p. The high reflector (HR) was 95% 

transmissive at 1.064 pm and 20 - 100% transmissive from 1.5 - 2.0 pm. The LiNb03 

OPO was tuned by varying the angle of the crystal within the cavity using a Klinger 

stepper-motor driven rotation stage. The 1200 mm image relay telescope that follows the 

Nd:YAG pump laser imaged @e. a magnification of 1) the output coupler of the Nd:YAG 

pump laser onto the LiNbO3 crystal in the OPO. A benefit of relay imaging the Nd:YAG 

pump beam onto the OPO crystal was that beam arrived approximately collimated at the 

crystal and that helped boost the output efficiency of the OPO. The OPO output through 

the input coupler was used as the pump beam for the SHG experiments involving the 

COB crystals and the OPO output through the high reflector was directed through a 
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Figure 4.3. LiNbO3 OPO setup. The 53-09 energy meter and LP1200 filter were only 
placed in the beam path temporarily to measure the OPO output energy at each 
wavelength setting. The HeNe laser was used to align the OPO optics and crystal. 

second LiNbO3 crystal which produced an SHG signal that was used to monitor the OPO 

output wavelength. The Glan-Laser polarizer separated the 1.064 pm pump beam from 
I 

the OPO signal beam along this direction of the setup. 

During the initial construction and operation of the LiNbOs OPO, some difficulty in 

obtaining output energies above the ClJ range was encountered. Efficient conversion 

requires high irradiance and good pump beam quality. Therefore an M2 analysis was 

performed on the NdYAG pump beam in both the vertical and horizontal directions to 

determine how close the beam was to a TEMm mode. A beam that is solely TEMm mode 

has perfect beam quality (i.e an M2 = 1). Beams which have higher-order mode content 
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have M2 > 1. The M2 factor [7] characterizes how a real beam differs in far-field 

divergence angle from that of a perfect TEMw beam if both beams have the same waist 

size. The M2 value appears in the expression describing the beam spot size as a function 

of propagation distance as shown in Eqn. (4.10). In Eqn. (4. lo), w(z) is the l/e2 beam 

(4.10) 

spot size (radius) as a function of position along the beam, wo is the beam waist, z,, is the 

z position of the beam waist, and M2 is the beam quality factor (21). The Nd:YAG beam 

was put through a focus using a lens and 21 beam images were collected for positions 

passing through the focus with a Cohu CCD camera Model ER5001B and a Spiricon 

Beam Analyzer LBA-100A. The translational position (z) corresponding to each beam 

image was also recorded. The lie2 irradiance widths (spot sizes) in the horizontal (x) and 

the vertical (y) directions for the beam at each z position were calculated from the images 

using a spreadsheet program written in Visual Basic. The values for w,, h, and M2 in 

each direction were obtained from a three parameter numerical fit of Eqn. (4.10) to each 

set of spot sizes. Fig. 4.4 shows the data for the beam spot sizes and the corresponding fit 

of Eqn. (4.10) in each direction. As can be seen from Fig. 4.4, the Nd:YAG beam has M2 

values of 2.206 in the x direction (horizontal) and 2.081 in the y direction (vertical). 

These values for M2 imply that the beam is not a pure "EM00 mode but that it has some 

higher order mode content. Though the Nd:YAG pump beam did not have an M2 = 1, it 

was of good enough quality that it did not end up severely degrading the performance of 

the LiNbO3 OPO or cause major damage to the mirrors or crystal. 
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z position (cm) 
Figure 4.4. NdYAG beam l/e2 irradiance spot sizes vs. position along the beam. The 
points are the widths calculated from beam images and the lines through the points are 
fits of Eiqn. (4.10) to the data. The insets show the results from the three parameter 
numerical fit for the beam waist sizes, the positions of the waists, and the M2 values for 
the two transverse directions. 

The LiNbO3 OPO signal was tuned in wavelength by changing the angle of the 

LiNbO3 crystal in the OPO cavity [8]. Fig. 4.5 shows the measured OPO output 

' wavelength vs. change in the external angle of the LiNbOs crystal. The OPO was tuned 

by changing the external angle of the crystal in increments of 0.05 degrees using a 

stepper-motor controlled rotation stage. The LiNbO3 OPO produced a signal beam that 

could be tuned in wavelength from about 1625 to 1975 nm. 

Fig, 4.6 shows the output energy of the OPO as it is tuned through about the same 

range of wavelengths. As shown in Fig. 4.6, the output energy of the OPQ at about 1650 

nm and 1950 nm was < 0.10 mJ/pulse. The drop in output energy below 1650 nm and 
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Figure 4.5. Measured L,iNbO3 OPO output wavelength vs. change in external angle of 
the LiNbO3 crystal. During the experiments, the wavelength of the OPO was always 
referenced relative to the de = 0.0" point on this graph. 

above 1950 nm is due to a change in reflectivity of the cavity mirrors. The dip in the 

OPO output energy at 1700 nm is where the OPO cavity mirrors have equal transmission 

and the dip at 1775 nm is due to strong C02 and H20 absorptions in the air. Note that the 

tuning range of the LiNbO3 OPO does not span the calculated degenerate wavelength for 

YCOB of 2100 nm. However, given the uncertainty to this calculated value (-&200 nm), 

as was discussed in section 4.2.3, we decided to proceed with experiments using the 

available OPO tuning range to see if possibly the COB crystals' phasematched SHG 

wavelengths lie in the 1650 - 1950 nm range. 
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Figure 4.6. LiNb03 OPO output energy vs. signal wavelength. The line through the data 
points is only to aid the eye. 

4.3.3 SHG experiments with the COB crystals 

The second part of the experimental work in this chapter was to measure the type II 

noncritical1 y phasematched SHG wavelengths for propagation along the x dielectric 

direction in the COB crystals. A schematic of the basic experiment was shown in Fig. 

4.2. Fig. 4.7 shows the detailed experimental arrangement that we used. 

The image relay telescope formed by the two plano-convex lenses has a 

demagnification of 2 and served two purposes. First, it roughly collimated the OPO 

signal beam that was incident on the COB crystals and secondly, it reduced the beam 

diameter by a factor of two thereby increasing the irradiance incident on the COB crystals 

by a factor of four. This increase in the irradiance of the OPO signal beam probing the 
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Transient digitizer 
Tcktmnix 
Model 2440 

Figure 4.7. Experimental setup to measure the non-critical type II SHG wavelengths for 
propagation along the x dielectric axis in the COB crystals. Note that the J3-09 energy 
meter and LP1200 filter were only placed in the beam path temporarily to measure the 
OPO output energy at each wavelength setting. The V-block was used to orient the COB 
crystals for type II interactions. 

COB crystals helped boost the strength of the signal produced by the COB crystals to an 

easily detectable level (-200 mV peak on the photodiode). 

Two samples of YCOB, one sample of GdCOB, and one sample of LaCOB, were 

prepared with faces polished perpendicular to within 1 degree of the x dielectric axis. 

The faces of the two YCOB samples were polished to within 5 arc seconds of parallel. 

The faces of the GdCOB and the GCOB samples were wedged by about 0.5 arc minute. 

The faces of all the crystals perpendicular to the x dielectric axis were prepared with a 

high quality optical polish. The GdCOB sample was cut from a commercially grown slab 

originally prepared for SHG at 1064 nm. The direction of the x axis was determined in 

the slab using a polariscope and then a sample was cut in the form of a cube. The 

propagation lengths along the x dielectric axis for all four COB crystals are given in 

Table 4.1. 

A 48.34 mm LiNbO3 crystal was used to benchmark the OPO pumped SHG 

experiment. It was a commercially grown crystal originally cut for use in a 1.5 - 3.5 gm 
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LaCOB 

Limo3 

Table 4.1. Crystals and propagation lengths 
used in the SHG non-critical wavelength 
experiments. *The propagation direction in the 
LiNbO3 crystal was at approximately 47" from 
the optic axis in the yz principal plane. 

3.80 

4834* 

x-axis propagation crystal 

YCOB 9.54 

I YCOB I 17.81 I 
I GdCOB 1 4.42 I 

OPO. The crystal was uncoated and one face was wedged relative to the other by about 7 

arc minutes. The LiNbO3 crystal was used in two ways. First, its peak SHG response 

was measured for a given tw I orientation. This gave a relative standard from which to 

predict the level of response from the COB crystals. Secondly, the FWHM of its SHG 

response as a function wavelength was measured (Le. spectral sensitivity) to determine if 

the experiment was resolving the proper behavior due to the wavelength tuning of the 

pump wave. 

Initially, since the LiNbO3 OPO would only tune from 1650 to 1950 nm, a 

preliminary experiment was conducted on the xcut YCOB crystal to see if the SHG 

phasematched wavelength actually fell in this range. If no SHG signal could be detected 

from the YCOB crystal in this wavelength range, then the LiNb03 OPO optics would 

need to be changed to produce an output signal spanning 2100 nm. The YCOB crystal 

was placed in the V-block in Fig. 4.7 and a Cohu CCD camera Model ER5001B was 

placed in the position of the photodiode. The camera was connected directly to a video 

monitor. The YCOB crystal was aligned approximately perpendicular to the OPO signal 
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beam and then the OPO was tuned from 1950 to 1650 nm. At around 1750 nm, a noisy 

SHG signal was observed from the YCOB crystal on the video monitor. The signal was 

verified to be due to the YCOB crystal by removing and replacing the YCOB crystal and 

observing the signal to disappear and reappear. This initial observation of SHG around 

1750 nm from the YCOB crystal was motivation for a more careful and methodical set of 

experiments to be conducted on the COB crystals in the wavelength range of 1650 nm to 

1950 nm. At this point in the study, the calculated value of the phasematched SHG pump 

wavelength of 2100 nm for YCOB was considered to be inaccurate and no further 

attempts were made to make measurements that spanned 2100 nm. 

The experimental procedure used to measure the SHG wavelengths in the 1650 to 

1950 nm range for propagation along the x dielectric axis in the COB crystals will now 

be described. Each of the COB crystals and the L i i O 3  crystal was placed in the 

experiment in turn at the location of the V-block in Fig. 4.7. The COB crystals were 

placed in the V-block (type II SHG) and aligned in angle such that their polished faces 

were approximately perpendicular to the OPO pump beam. For the LiNbO3 crystal, the 

V-block was removed (type I SHG) and the crystal was tuned in angle to produce peak 

SHG for a pump wavelength of 1750 nm. 

After each crystal was aligned on the OPO pump beam, the OPO was tuned from 

1950 to 1650 nm in steps of 0.05' external angle (= 7 nm per step). At each angle setting 

for the OPO, the SHG signal for the crystal under test was measured using the photodiode 

and transient digitizer (oscilloscope) shown in Fig. 4.7. The signal was averaged on the 

transient digitizer over 64 samples to help reduce the shot to shot noise in the reading. 

After the reading was made from the transient digitizer, the J3-09 energy meter was 
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placed in position, as shown in Fig. 4.7, and that signal was averaged over 40 shots to 

give the OPO incident energy. Then the OPO was tuned to a shorter wavelength by 0.0~~ 

and the procedure was repeated. 

The raw SHG data collected for each of the crystals is shown in Fig. 4.8. The raw 

data was normalized to variances in the OPO pump irradiance by dividing it by the 

square of the normalized OPO pump energy. The data was then further normalized by 

the SP1350 filter response in the range of the SHG produced by each crystal under test. 

The normalized data is shown in Fig. 4.9. The lines connecting the points in Figs. 4.8 

and 4.9 are only to serve as an aid to the eye. All of the COB crystals show a peak SHG 

response at -1725 nm in the raw data. In the normalized data, a peak SHG response is 

still observable but much less obvious. 

4.4 Discussion of the SHG response 

The appearance of the data for the COB crystals in Figs. 4.8 and 4.9 is very 

unexpected since it does not have a sinc’ response with wavelength. (We estimated the 

SHG conversion efficiency to be approximately 1.5% which would imply that the 

response with wavelength should be a sinc’ as described by Eqn. (2.52).) Also, the SHG 

response for the COB crystals in Figs. 4.8 and 4.9 shows an unusual “spiking” behavior 

as the pump wavelength was tuned. The SHG measurements on all the crystals were 

repeated several times with the results (i.e. the SHG signal strength and the spike 

positions) for each crystal being almost identical between the data sets (Le. very 

reproducible). Therefore the cause of the fluctuations in the COB crystal‘s data was not a 

random or time dependent effect. 

This prompted efforts to determine if what was observed was actually phasematched 
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Figure 4.9. Normalized SHG responses. (a) 9.54 mm YCOB crystal, (b) 17.81 mm 
YCOB crystal, (c) 4.42 mm GdCOB crystal, (d) 3.80 mm LaCOB crystal, and (e) 48.34 
mm LiNbO3 crystal. 
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SHG. Several experimental "checks" were performed to determine if the signals from the 

COB crystals were phasematched SHG. First, with the OPO tuned such that the x-cut 

YCOB crystal was producing a signal, the x-cut YCOB crystal was replaced by a z-cut 

YCOB crystal (no type II SHG theoretically allowed along the z direction) of about the 

same thickness and the observed SHG signal vanished completely. Second, the x-cut 

YCOB crystal in the type II orientation was rotated 45 degrees and the SHG signal was 

observed to drop to zero indicating that a true type II SHG signal was being observed. 

Next, with the YCOB crystal producing a signal, an approximately 0.3 O.D. filter was 

placed into the OPO pump beam ahead of the YCOB crystal and the SHG signal was 

observed to drop by about a factor of 4. These tests lead to the conclusion that the 

observed signals were phasematched SHG generated by the COB crystals. 

In order to add further credibility to the SHG data for the COB crystals, the ratio of 

the normalized measured peak SHG signal for one of the YCOB crystals, (a) in Fig. 4.8, 

was formed with that of the LiNbO3 crystal and that ratio was then compared to the 

theoretically Calculated ratio of k2L2/n(a)n2(o) for the two materials. The ratio of the 

normalized measured peak SHG signals from the two crystals is calculated in Eqn. (4.1 1) 

from the experimental data. The peak SHG signals for both the LiNbO3 and YCOB 

YCOB 
12, 

12, 

- = 0.0079 & 20% LiNbo, (4.1 1) 

crystals were estimated from the data and each had 5% and 15% experimental 

uncertainty, respectively. The peak SHG signal for the LiNbO3 crystal was fairly easy to 

identify from the data collected, however, the peak for the YCOB crystal was difficult to 

determine. The value used in the calculation of Eqn. (4.11) was determined by 
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examining the raw YCOB data and estimating, from the wavelength span of highest SHG 

response, what the average peak SHG signal level was and its associated uncertainty. 

The peak value was then normalized and used in Eqn. (4.11). The theoretical ratio of the 

corresponding &2L2/n(2a)n2(a) for the two materials is calculated in Eqn. (4.12). The 

- - d& ( YCOB)L2 (YC0B)n (LiNbO, )n ;a (LiNbO, ) 
d& (LiNb0,)L2(LiNb03)n2,(YCOB)n~,(YCOB) 

(4.12) 
= 0.0092 

(1.69 pm/V)' (9.54 mm)' (2.17)(2.20)' 
(5.12 prn2(48.3mrn)' ( ~ 7 ) ~  

value for the ratio in Eqn. (4.12) agrees within the experimental uncertainty with the 

value in Eqn. (4.11). Therefore it is again concluded that the signal from the YCOB 

crystal is phasematched SHG. Given the general level of the measured signal from the 

other COB crystals, it can be concluded that those crystals too, produced phasematched 

SHG. 

The results for the response of the LiNbO3 crystal in Figs. 4.8 and 4.9 do resemble a 

sinc'. A fit of Eqn. (2.52) to the data in Fig. 4.9 (e) yields a wavelength sensitivity (PA) 

of 0.054 (cm-nm)*' for LiNbO3. This value is about 125 times less than the calculated 

value of 6.63 (cm-nm)-'. Therefore the response of the LiNbOs crystal is 125 times wider 

in wavelength than expected. We would expect a very clear sinc' response that has the 

width we expect for the LiNbO3 crystal because L imo3  is a perfected material and our 

crystal was commercially produced. Since the width of the response even for Limo3 is 

much too wide, this implies that there must be some errors in our assumptions about our 

experimental procedure. 

We are assuming that our OPO pump beam is monochromatic. This is highly 
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unlikely for two reasons. First, the OPO cavity is composed of flat mirrors and SO there 

is no distinct cavity mode that is supported4.e. the OPO probably oscillates in many 

modes. Secondly, the Nd:YAG beam is not absolutely collimated at the L i m o 3  crystal. 

Therefore the presence of many cavity modes combined with a noncollimated pump 

beam would allow noncollinear phasematching to occur in the LiNbO3 OPO producing 

an output beam that was broadband and diverging [9]. Therefore these two issues 

(broadband and diverging) with the LiNb03 beam, would give rise to noncollinear 

phasematching in our test crystals which is an effect that could be responsible for the 

spectrally broad SHG signals obtained for the LiNbO3 and COB crystals. 

The spiking behavior in the COB crystal's data could possibly be due to an 

interference or etalon effect arising in the crystals. To obtain an estimate for the level at 

which an etalon effect might affect the transmission of the crystals, the free spectral 

range, finesse, and cavity mode width were calculated for an etalon with properties 

(thickness, index of refraction, and reflectivity) that axe representative of the COB 

crystals studied. Following [lo] and [l 11, for an etalon with a thickness of 0.954 cm, an 

index of refraction of 1.7, and a reflectivity of 0.067 (Fresnel reflection) the free spectral 

range, finesse, and cavity mode width can be calculated to be 0.09 nm (at 1750 nm), 0.87, 

. ~ 

and 10 GHz, respectively. A free spectral range of 0.09 nm corresponds to a spacing 

between adjacent transmission peaks that is much too narrow to be resolved by the SHG 

experiments since the LiNbO, OPO output had a linewidth of 1 - 6 nm. The modulation 

depth of the transmitted irradiance as a function of wavelength through an etalon with a 

Finesse of 0.87 should be a maximum of 50%. As can be seen from the data in Figs. 4.8 

and 4.9, the SHG signal dips well below the 50% level in most cases. It therefore seems 
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unlikely that the effect causing the fluctuations in the COB crystals’ data is an etalon 

effect. 

From the data presented and the preceding discussion, it is clear that the measured 

SHG data for the COB crystals does not follow the expected behavior. Further 

experimental work is needed to accurately determine the type I1 NCPM wavelengths for 

propagation along the x dielectric axis in YCOB, GdCOB, and LaCOB in order to 

evaluate their utility for OPO applications. Steps should be taken to narrow the linewidth 

of the OPO output and to achieve better beam collimation at the samples. The linewidth 

of the OPO could be improved by using cavity mirrors that make the OPO cavity into a 

stable configuration. The OPO pump beam also fi’eeds to be examined to see if it is 

maintaining a constant spatial profile as the OPO is tuned. The tuning range of the OPO 

needs to be extended to shorter wavelengths to investigate if the COB crystals‘ response 

might actually peak at a wavelength shorter than 1650 nm. Also the tuning range of the 

OPO needs to be extended to longer wavelengths to verify that the phasematched SHG 

wavelength is not actually near 2100 nm as predicted by the Sellmeier equations of Ref. 

[3]. Wedging of the faces of the crystals should be explored to determine if this would 

reduce the fluctuations seen here in the SHG signals. 

4.5 Summary 

We successfully built a pulsed LiNbO3 OPO that produced 4 ns pulses with a 

maximum energy per pulse of 1.0 mJ at 1825 nm. The beam quality of the Nd:YAG 

laser used to pump the LiNbO3 OPO was experimentally characterized using an M2 

analysis, and was found to have M2 values of 2.206 and 2.081 in the horizontal and 
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vertical directions, respectively. We were also able to continuously angle tune the 

L i m o 3  OPO from 1625 to 1975 nm. 

Using the LiNbO3 OPO as a pump source, type 11 phasematched SHG was observed 

for propagation along the x dielectric axis in YCOB, GdCOB, and LaCOB. Attempts to 

determine the exact noncritically phasematched wavelength down the x dielectric axis 

for these three crystals were not successful. The data collected for the COB crystals 

showed a phasematched signal but the phasematched wavelengths could only be 

estimated to be near 1725 nm and the expected sinc2 response could not be resolved. 

A LiNbO3 crystal produced data that had an approximate sinc' form and allowed 

determination of the wavelength sensitivity through a numerical fit to the data. A value 

for pn of 0.054 (cm-nm)-' was determined for a 4.83 cm crystal. This experimentally 

determined value for for LiNbO3 differs greatly from the calculated value of 6.63 (cm- 

nm)". Lack of monochromaticity and collimation of the OPO pump beam were 

discussed as possible causes to the broad response for the LWO3 and the COB crystals. 

To more accurately determine the SHG wavelengths for the COB crystals, several 

improvements to the experimental procedure were suggested. 
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Chapter 5 

Linear electro-optic properties of YCaO(BO& (YCOB) 

Originally titled as: J. J. Adam and C. A. Ebbers, "Linear electro-optic properties of 
YCadO(BO3)J, " to be published 

5.1 Introduction 

In the past five years, several new nonlinear crystals (i.e. YCa0(B03)3 [1-4], 

CsLiB&o [4], and B&O6 [5 ] )  have been discovered and commercially developed for 

use as frequency doublers and triplers. However, there rtmains little progress in 

expanding the suite of commercially available electro-optic crystals. Crystals for use in 

commercial electro-optic applications must have the standard properties that make them 

desirable as optical materials (Le. lack of hygroscopicity, high damage threshold, high 

transparency within the desired wavelength range, favorable growth and fabrication 

properties, etc.) and they must also possess adequate nonlinear optical coefficients. In the 

absence of an ionic contribution to the nonlinear susceptibility [6], the electro-optic 

coefficient of a material (rE) is strictly proportional to the value of the nonlinear optical 

coefficient (dit) [7-91 as given by 

where E is the lin ar dielectric constant and n is the refractive inde of the material. Thus 

without a ferroelectric phase transition, only nonlinear crystals with substantial nonlinear 

optical coefficients (dil) have merit as electro-optic crystals. 

The half-wave voltage (V,) for an electro-optic crystal (as was discussed in Chapter 

2) is given by Eqn. (2.134) as 
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(2.134) 

where d is the separation between the electrodes (Le. the crystal thickness over which the 

DC voltage is applied), L is the beam propagation length through the crystal, h is the 

wavelength of the light, and reR is the effective electro-optic coefficient. The form of the 

effective electro-optic coefficient is dependent upon the crystal symmetry, as well as the 

orientation of the applied voltage and direction of light propagation. In general, it is 

desirable to use applied voltages less than 15 kV, otherwise corona discharge begins to 

arise as an issue. In addition, material aspect ratios larger than 101 (L.d) become 

impractical from a propagation and device fabrication point of view. With these two 

constraints in mind, potentially useful electro-optic crystals should have eflecttive electro- 

optic coefficients of at least 7 pmN. 

KTiOPO4 [lo], -PO4 (KD*P) [ 111, LiNbO3 [ 121, and BaB204 @BO) [13] are four 

common commercially available electro-optic crystals which in a typical configuration 

have effective electro-optic coefficients of approximately 170, 160, 135, and 20 pmN, 

respectively. Of these 4 crystals, only KD*P is routinely available with high optical 

homogeneity for apertures exceeding 2 cm2. Unfortunately, due to relatively large stress- 

optic coefficients [6], low thermal conductivity [ 141, and difficulty in accepting optical 

coatings, KD*P is not well suited for high-average power applications. Thus it is of 

interest to characterize the electro-optic coefficients of new nonlinear optical crystals 

with favorable growth, fabrication, and high-average power handling properties. 

In Chapter 3, we determined that the values for the d12 and d32 nonlinear optical 

coefficients for LaC*O(B03)3, GdCaO(B03)3, and YCOB vary very little between the 
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three crystals. The d32 coefficient was found to be of relatively large magnitude equal to 

1.69 pmN. J3qn. (5.1) can be used to estimate the magnitude of the corresponding linear 

electro-optic coefficient (rn) for YCOB. We have estimated the dielectric constant (K) 

for YCOB to be = 8 from a simple parallel-plate capacitance measurement. Therefore 

using Eqn. (5.1) with K = 8 and n = 1.7, we estimate that the corresponding linear 

electro-optic coefficient (rn) would have a magnitude of approximately 3 pmN. This 

implies that the corresponding eflective electro-optic coefficient (ra) would have an 

approximate magnitude of ran3 = 14 pmN. Because of their robust mechanical and 

thermo-mechanical nature [15], these materials-if they do indeed possess substantial 

linear electro-optic coefficients-would have potential application in large aperture, high- 

average power 1 pn Q-switches. 

In this chapter, we report on measurements of the effective linear electro-optic 

coefficients along principal dielectric directions in YCOB. Section 5.2 describes the 

experimental techniques that were used to measure the coefficients. Section 5.3 presents 

the experimental results for several of the transverse and longitudinal YCOB modulators 

that were studied. In section 5.4, we discuss the experimental results and calculate the 

effective electro-optic coefficients and half-wave voltages. Section 5.5 summarizes the 

chapter. 

5.2 Experimental technique 

We performed two basic sets of experiments. One set of experiments involved 

measuring the transmitted irradiance (k) through a KDP, KD*P, and six different 

YCOB modulators while a low frequency voltage was applied. The other set of 
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experiments involved measuring the transmitted irradiance (Itrx) through a KDP, m*P, 

and six different YCOB modulators while a DC voltage was applied. 

The YCOB samples used in the experiments were cut from a Czochralski grown 

boule that was procured from Crystal Photonics, Inc. Fl. The YCOB samples were 

fabricated into slabs with polished faces perpendicular to the crystal's dielectric directions 

(x, y, and z) as specified in Tables 5.1 and 5.2. The crystal faces across which the electric 

field was applied were sputtercoated with approximately 2 pn of gold for the transverse 

cases and 120 nm of gold for the longitudinal cases. (The thinner gold coating that was 

used for the longitudinal cases was electrically conductive -50% transmissive.) 

Electro-optic experiments were also conducted on a KH2P04 (KDP) crystal and a 

KD*P crystal. These crystals were used as standards for comparison. The KDP crystal 

was grown at LLNL and had uncoated polished'faces perpendicular to the directions 

specified in Table 5.3. The KD*P crystal was extracted from a commercially 

manufactured Q-switch and had uncoated polished faces perpendicular to the directions 

specified in Table 5.3. We did not have any literature on the deuteration level of the 

KD*P crystal nor did we perform any analysis to determine it. However since the KD*P 

crystal was obtained from a commercially produced Pockels cell, we will assume it has a 

deuteration level of 99% as is often found in commercially produced JSD*P for electro- 

optic applications [16]. 

For the electro-optic experiments, transverse and longitudinal configurations were 

studied as schematically shown in Chapter 2, Figs. 2.12 and 2.14. In Chapter 2, we 

derived expressions that related the transmitted irradiance of six different YCOB 

modulators to the applied voltage. We quote the expressions derived in Chapter 2 
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(Tables 2.1 and 2.2) for the YCOB modulators in Tables 5. I and 5.2. The expressions for 

ld, that are shown in Table 5.3 for the KDP and KD*P modulators can be derived using a 

very similar method to that described in Chapter 2 for the YCOB modulators. Several 

conventions are used in Tables 5.1 - 5.3 and throughout the rest of this chapter. First, the 

notation L[###] and d:[###l] specify the directions for the beam propagation and the 

applied voltage, respectively in terms of the crystal's dielectric directions [xyz] (for the 

case of KDP and KD*P, x and y are the two mutually orthogonal twofold axes of 

symmetry that lie in the plane normal to the optic axis (z)). &, is the irradiance of the 

laser beam entering the modulator. Tc is the retardation imparted by the compensator 

which is manually adjustable from 0 to 6n. rs is the retardation due to the crystal's static 

birefringence and is defined in general by Eqn. (2.145) (l?,d = + rV). 
In the expressions for for the YCOB modulators, n,, ny, and n, are the principal 

refractive indices for YCOB and have values at 632.8 nm of n, = 1.695, ny = 1.727, and 

n, = 1.738 and at 1064 nm they have values of n, = 1.684, ny = 1.715, and n, = 1.725 [l]. 

In the expressions for & for the KDP and KD*P modulators, n, is the ordinary refractive 

index and n, is the extraordinary refractive index. The values for n,, and n, for KDP at 

632.8 nm are 1 SO7 and 1.466, respectively and at 1064 nm they have values of 1.494 and . 
1.460, respectively [12]. The values for n,, and n, for KD*P (99% deuteration) at 632.8 

nm are 1.503 and 1.465, respectively and at 1064 nm they have values of 1.493 and 

1.458, respectively [ 161. 

The experimental setup used for the AC measurements is shown in Fig. 5.1. The 

quarter-wave plate (U4) ensured that circularly polarized light was incident on the crystal 



Table 5.1. Modified refractive indices, crystal retardations, and Im for four transverse YCOB modulators. 
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Table 5.3. Modified refractive indices, crystal retardations, and Itrx for the KDP and KD*P modulators. 
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in each experiment. The laser employed was a 14 mW polarized CW HeNe laser 

operating at 632.8 nm. Before each of the AC experiments with the KD*P crystal, the 

compensator was set to impart a retardation of rc = 0 and the crystal was aligned 

perpendicular to the beam using back reflections. Before each of the AC experiments 

with either the YCOB or KDP crystals, the compensator was set to rc = n/2. The crystal 

was then placed on the adjustable mount and tuned in angle such that maximum 

transmitted irradiance (i.e. r, = md2 where m is an odd integer) was obtained through 

the analyzer as measured by the lock-in amplifier for a 5 kHz, 20 Vw- applied 

voltage. By changing the angle of the crystal (A0 S 2.2”). we effectively caused a small 

change in the value of L (S  14 p) and therefore the retardation specified by r, was 

made to cycle through an odd multiple of d2.  Only a small change in L is needed to 

cause I?, to cycle through a multiple of d 2  because L multiplies a term in r, that is large 

(i.e. -1.1 x 1d radians/cm). 

U - i n  amplifier 

I 

1 I r k czvstal with 

I- 

Figure 5.1. Experimental setup used for the AC electro-optic measurements. 
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During the AC experiments, a 2 0 V w - ~ ,  5 kHz sine wave from a Hewlett-Packard 

model 3325A function generator was applied to the crystals. The compensator was used 

to vary the transmitted irradiance while the fixed AC voltage was applied to the 

modulator (crystal). Adjusting the compensator allowed clear detection of the peak in the 

modulated irradiance. The compensator was adjusted in discrete steps through a total 

retardation of 61t while the transmitted irradiance was measured using a Si photodiode 

and a Stanford Research Systems model SR830 DSP lock-in amplifier. Note that in the 

AC experiments, the irradiance that was measured by the lock-in amplifier was only that 

part of the total transmitted irradiance that was time varying or modulated at 5 kHz (i.e. 

only the term in 4, that depends on Vwid). AIso, since we only measured the 

mamitude of the modulation with the lock-in amplifier and paid no attention to the 

phase, we cannot determine the sign of the (sinT,)(r,tf) term in the expressions for &. 

(For instance, with I', = d2, r, could have equaled either lr/2 or 3- while rea could 

have equaled either +Ird or -Ired and in either case we still would have measured a 

maximum magnitude for the modulation.) Consequently, we will only be able to 

determine the absolute value of reR from our AC data. 

The experimental setup used for the DC measurements is shown in Fig. 5.2. In the 

DC experiments, 0 - 3 kV was applied to the crystals in discrete steps using a Hewlett- 

Packard model 6516A DC power supply. The total transmitted irradiance as a function 

of the applied DC voltage was measured by chopping the laser beam at 3.75 kHz and 

detecting the transmitted irradiance using a photodiode and a lock-in amplifier. The input 

irradiance (Io) was measured simultaneously from a beam pick-off using a photodiode 

and a lock-in amplifier and was used to correct the transmitted irradiance data for 



141 

Recision 
achsrpa 

dcf(r0da Babii4oIcil  
ddjurabk mnpaurta 

mDulll 

Figure 5.2. Experimental setup used for the DC electro-optic measurements. 

variations in the input irradiance. 

Before beginning the DC experiments, the crystal was tuned to maximum transmitted 

irradiance in the AC experiment as described above and then the experimental setup was 

reconfigured to that shown in Fig. 5.2. The compensator remained at its initial setting of 

either 0 or Icn throughout the DC experiments. The DC voltage was applied to the crystal 

and then increased in a few steps while the transmitted irradiance was observed to either 

increase or decrease. If the transmitted irradiance decreased, the experiment was 

reconfigured back to the AC arrangement and the crystal's angle was changed until r, 

cycled to the next multiple of nI2. Since we did not determine the sign of the sinr, term 

in I& and we did not note the sign of the DC applied voltage, we will only be able to 

determine the magnitude of rem from our DC measurements. 

The AC and DC experiments were repeated several times with each crystal to verify 

the reproducibility of the data. The AC data for each crystal varied by approximately 
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15% between the data sets. The DC data for each crystal varied by approximately 10% 

between the data sets. 

5.3 Experimental results 

We measured the transmitted irradiance through a KDP, KD*P, and six different 

YCOB modulators while an AC or a DC voltage was applied. Only the data collected on 

three of the six YCOB modulators is shown in Figs. 5.3 and 5.4. The other three 

configurations had very small relative electro-optic responses. The dashed lines through 

the data in Fig. 5.3 are only to aid the eye. The solid lines through the data in Fig. 5.4 are 

the numerical fits of the corresponding equations given in Tables 5.1 - 5.3; 

I I I I I I I I 

Absolute compensator retardation (radians) 
Figure 5.3. Normalized modulated irradiance through the KDP and YCOB modulators as 
a function of the compensator retardation for a 20V, 5kHz (AC) applied voltage. 

The AC data shown in Fig. 5.3 was corrected in several ways. The input beam 

irradiance from the HeNe laser was noticed to vary by approximately &5% between the 

data sets and so the data sets were first normalized to an equivalent input beam 
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Figure 5.4. Transmission through the KD*P, KDP, and YCOB modulators as a function 
of the applied DC voltage. Note that a transmission of 1 implies 100% transmission 
through the modulators. 

irradiance. Second, the refractive index of YCOB differs from that of KDP and KD*P by 

approximately 13% and so the transmitted irradiances were adjusted to account for the 

differences in the Fresnel reflections. Third, all the data sets in Fig. 5.3 were normalized 

by the peak modulated irradiance produced by the KDP modulator. Therefore the ratio of 

the peak irradiances produced by the YCOB modulators to that of the KDP modulator is 

equal to the ratio of re&d for the YCOB and KDP crystals. Fourth, the transmitted 

irradiances in the longitudinal experiments were also adjusted to account for the 

measured differences in the transmission (-20%) of the semi-transparent gold electrodes 

that had been coated onto the different crystals. 

The DC data in Fig. 5.4 is shown normalized by the measured input beam irradiance 

(Io). The DC data was also corrected for the calculated Fresnel losses of the YCOB 
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crystals. Note that because a quarter-wave plate was used in the modulators the percent 

transmission for no applied voltage is 50% [9]. Also, the data for KD*P reached 1 0 %  

transmission because VJ2  at 632.8 nm for KD*P is approximately 1950 V. 

5.4 Effective electro-optic coefficients and half-wave voltages 

Table 5.4 displays the AC and DC determined values for the effective electro-optic 

coefficients. The experimental configurations for the crystals within the modulators are 

as indicated. V- is the applied DC or low frequency AC voltage, is the wavevector 

for the laser beam, r d  is the relevant effective electro-optic coefficient, and V41064 nm) 

is the calculated half-wave voltage at 1064 nm assuming L = d. For the YCOB and BBO 

crystals, V41064 nm) was calculated using the AC values for r& and for the KDP and 

KD*P crystals it was calculated using the DC values for reE. The equations in Tables 5.1 

- 5.3 and the data in Figs. 5.3 and 5.4 were used to calculate the re@ values that are 

shown. Note that the data that was used to calculate the r d  values for YCOB in the 

(L:[OlO] d:[100]), (L:[OlO] d:[100]), and (L[OlO] d:[100]) configurations in Table 5.4 

was measured but was not shown in the figures. The data for BBO is from the cited 

reference. 

The AC values for the reis in Table 5.4 were obtained by comparing the peak 

modulated irradiances for the YCOB modulators to the peak modulated irradiance for the 

KDP modulator and using re@ = 35.8 pmN for KDP. We calibrated our AC experiment 

by comparing KDP to KD*P from which we determined that the ratio of the r6js for KDP 

and KD*P was 0.423. This agrees within 8% of the ratio of values found in Ref. [ 171. 

The DC values for the refils in Table 5.4 were calculated from the slope of the 

numerical fit of the appropriate equations in Tables 5.1 - 5.3 to the DC data. (Note that 
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in the expressions for 4nr in Tables 5.1 and 5.2, It, is linearly proportional to the applied 

voltage with the constant of proportionality containing refi. Therefore from the slope 

parameter of the numerical fit we can extract the magnitude of reH. We do not determine 

any information about the sign of rem from the slopes for the reasons discussed in section 

5.2) In general, the numerical fits were good as shown in Fig. 5.4. However, the fitting 

parameters varied by approximately 10% amongst the data sets for a particular crystal. 

We calibrated our DC experiment by determining reR for KDP in a transverse 

configuration and r a  for KD*P in a longitudinal configuration. From the slopes of the 

fitted lines to the data for KDP and KD*P, we determined r a  = h3r63 = 35.8 f 4.5 pmN 

for KDP and rem = 2h3r63 = 159.9 f 9.5 pmN for KD*P. r63 values were then calculated 

from the reE values using n, = 1.51 for KDP and n, = 1.50 for KD*P, yielding 10.4 f 1.3 

pmN and 23.7 f 1.4 pmN for KDP and KD*P, respectively. The r63 values determined 

here for KDP and KD*P agree with that of Ref. [ 171. In general, we see good agreement 

between the AC and DC values for the reds in Table 5.4 which would suggest only a 

small (< 15%) or zero photo-elastic [6,11] contribution to the rem values determined in the 

5 lcHz AC experiments. 

From the rem values for YCOB in Table 5.4, we see that the maximum rem in the 

transverse configurations is 10.81 f 1.46 pmN and the maximum reR in the longitudinal 

configurations is 10.7 rf: 1.0 pmN. The corresponding half-wave voltage calculated at 

1064 nm with L = d for either of these two large coefficients is 99 kV. A half-wave 

voltage of 99 kV is a little more than twice that for an equivalent length of BBO and 

substantially more than the half-wave voltage for either KDP or KD*P. The value for re@ 

for the other longitudinal configuration with YCOB is -3 pmN which implies an 



Table 5.4. Experimentally determined effective electro-optic coefficients and calculated half-wave voltages. 
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impractical half-wave voltage of 3 13 kV. 

Examination of the remaining transverse results for YCOB reveals rem coefficients 

that have upper bounds I 2 pmN. The results for the coefficients (r23n,3-tl3n2) and 

(r33n2-rsn;) suggest that r13 and r33 are either small, equal in magnitude, or both. 

Various combinations of the coefficients for YCOB in Table 5.4 were examined to 

determine if the values were consistent. Nothing meaningful or consistent was deduced 

in this way for the different coefficients in Table 5.4. This is most likely due to the 

relatively large emf bars (-1596) on the larger coefficients and that only upper bound 

estimates for the smaller coefficients (< 2pmN) could be determined because of the low 

signal-to-noise ratio in the data. 

.5.5 Summary and conclusions 

We have characterized the effective linear electro-optic coefficients along dielectric 

directions in YCOB for four transverse and two longitudinal configurations. W e  find a 

maximum r a  of 10.8 1 f 1.46 pmN for the transverse configurations and a maximum r d  

of 10.7 f 1.0 pmN for the longitudinal configurations. The effective electro-optic 

Coefficients for the other transverse and longitudinal configurations were measured to be 

< 4 pmN. We see that our estimate of the effective electro-optic coefficient run3 of -14 

pmN is consistent (Le. within a factor of two) with the measured reff values that contain 

3 the rB coefficient (Le. ren = r33nz -r23n; = 10.81 f 1.46 pm/V). Also if we estimate the 

effective electro-optic coefficient rzln3 in a similar manner we find its value to be -2 

pmN which is consistent (i.e. -within a factor of two) with the measured rem values that 

contain the r12 coefficient (i.e. ren = r3ln;-r21n; = 3.43 +_ 0.49 pmN). 
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Half-wave voltages of -100 kV were found for YCOB crystals with 1:l aspect ratios 

(Le. L = d). Electro-optic crystals in configurations with half-wave voltages c lOkV are 

preferable. Therefore single crystal electro-optic applications involving YCOB maybe 

rare in the near future. However, YCOB's ease of growth and handling makes large 

aperture, multi-plate longitudinal configurations feasible. The advantage of using 

multiple plates is that the required half-wave voltage would be much less than 99 kV. 

Another useful configuration would be to employ a pair of identical YCOB crystals each 

with a 5:l &d) aspect ratio separated by a 90" rotator. One advantage of this 

architecture is that it compensates for the crystals' static and thermally induced 

birefringence. Another advantage is that because of the 5 1  aspect ratio of the YCOB 

crystals, the half-wave voltage is < 10 kV. 

application as a large aperture 1 pm Q-switch. 

YCOB may therefore have potential 
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Chapter 6 

Optical spectroscopy of Fe&:ZnSe crystals 

6.1 Introduction 

Atmospheric remote sensing of gas pollutants or aerosol plumes and laser radar 

(LJDAR) involve transmitting a beam of laser light over large distances through the 

earth's atmosphere (5 - 10 km) [l]. These applications also typically require a certain 

tunability of the laser's wavelength [2]. The earth's atmosphere contains, among others, 

the gases 0 2 ,  C02, and water vapor. The presence of these constituents give rise to 

strong absorption bands in the earth's atmosphere throughout the 0.5 - 5 pn wavelength 

range [3]. The effect of these absorption bands will cause nearly 100% attenuation of the 

laser beam for propagation through the earth's atmosphere of only a few hundred meters. 

There does exist however, "atmospheric transmission windows'' in the 0.5 - 5 pm range 

where thek is nearly 100% transmission. Transmitters for remote sensing and LIDAR 

ideally need to operate at wavelengths that lie in these atmospheric transmission 

windows. Two broad atmospheric transmission windows exist from 2.0 to 2.5 pm and 

from 3.4 to 4.2 pm [3]. There are no commercial direct solid-state lasers available in 

these wavelength ranges and so optical parametric oscillators (OPO) are typicalIy used 

for these applications. OPO's, though broadly tunable, incorporate nonlinear crystals and 

moderate power laser pump sources, which add complexity and bulk to the system. It 

would be desirable therefore, from a design point of view, to find gain materials that 

would allow the operation of direct solid-state lasers in these two wavelength "windows". 

Much work has been done in the past 40 years investigating the optical properties of 

transition metal impurities in zinc-blende crystals [4-251. In the 1960s and early 1970'~~ 
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transition metal impurities (i.e. C3' and Fe2+) in zinc-blende crystals were found to 

. -  

broadly luminesce in the 2 - 5 pm range. Fe2+ impurities were originally characterized 

because of their luminescence "quenching" behavior at mom temperature in the 

phosphors (based on II-VI compounds) used in early fluorescent displays [22]. The 

infrared luminescence of Fe2+ impurities in ZnSe (Fe2+:ZnSe) was first reported by 

Haanstra [22] in 1967. He observed broad absorption and emission bands centered 

around 3.7 pm at temperatures of 8 K and 18 K, respectively. (Fe2+:ZnSe only 

luminesces for temperatures below about 225 K because of thermally-activated 

nonradiative coupling to the vibrational modes of the ZnSe lattice.) About 16 years later, 

in 1983, Fe2+ was first lased in n-hP at 2K by Klein et al. [23] who were studying 

photoluminescence and non-radiative transitions of Fez' impurities in n-JnP. Direct 

optical pumping at 580 nm was used to reach laser threshold at 3.5 pm. The laser had a 

threshold of about 90 @/pulse and an estimated tunability of 0.07 pm. Dehach et al. in 

1996 [24,25] investigated the spectroscopic properties of primarily C?. Co2+, and Ni2+ 

ions in ZnTe, ZnS, and ZnSe hosts. Their efforts were mainly focused on finding mom 

temperature infrared laser materials for use in surgical lasers, which utilize the water 

absorption in human tissue at about 2.7 pm for cutting and drilling. They identified 

C?+:ZnS, C?+:ZnTe, and C?+:ZnSe as strong candidates in the 2.0 - 2.8 pm range. 

They also examined Fe2+:ZnSe and found a broad absorption band at -2900 nm but no 

luminesce at room temperature which is in agreement with previous researchers. They 

reported luminescence lifetime data for Fe2+:ZnSe for temperatures between 100 K and 

225 K but no absorption or emission spectra were presented. 

Our interest in Fe2+ impurities in the zinc chalcogenides lies in the possibility for 



152 

broadly tunable laser emission in the 4.0 pm range. Based on previous work 122,241, it 

can be estimated that a laser based on Fe2+:ZnSe would only operate at cryogenic 

temperatures but would have significant tunability from approximately 3.6 pm - 4.2 pm. 

The focus of this chapter is to accurately determine the absorption and emission 

wavelengths, absorption and emission cross-sections, and luminescence lifetimes for 

Fe":ZnSe in the 4.0 pm range as a function of temperature. Quantitative knowledge of 

- these properties will be used in the next chapter to predict Fe2+:ZnSe's potential to exhibit 

laser oscillation. 

In the first part of this chapter (section 6.2), the theoretical splitting of the p u n d  and 

first excited state of a Fez' free-ion by an external tetrahedral crystal field and spin-orbit 

coupling is discussed. This corresponds to the static situation describing Fe2+ impurity 

ions in a ZnSe lattice. The effects of the Fez' ions being coupled to a vibrating crystal 

lattice are then discussed in terms of a configuration coordinate diagram. The 

temperature dependent absorption, emission, and lifetime data measured for Fe2+:ZnSe 

are presented in section 6.3. In Section 6.4, the absorption and emission data are analyzed 

and used to construct an accurate energy level diagram for the ground and first excited 

-states for Fe2+:ZnSe that includes both electronic and vibrational levels. Section 6.5 

summarizes the major results. 

6.2 Theoretical background 

In the next several sections, a theoretical description for the energy level structure for 

Fez+ impurities in a static and vibrating ZnSe lattice is developed. 
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6.2.1 Energy states for Fe2':ZnSe 

Since Fe2+ and Zn2+ have nearly equal ionic radii, Fe2+ will preferentially substitute 

for Zn2+ in the ZnSe lattice. The Fe2+ ions in the ZnSe lattice have as nearest neighbors 

four tetrahedrally coordinated Se2- ions. Therefore the crystal field that Fe2+ will 

"experience" has tetrahedral symmetry. Fe2+ has six valence electrons, all which reside in 

its 3d orbitals. The 3d orbitals are radially the farthest occupied orbitals from the Fe2+ 

nucleus and therefore Fe2" bonds to the ZnSe lattice primarily through these orbitals. As 

a result, the effect of the external crystal field on the valence electrons of Fez+ is a 

stronger interaction than their spin-orbit coupling. For the moment, we will assume that 

the ZnSe lattice is motionless and that Fe2+ sees only a static tetrahedral crystal field. 

We will now postulate a Hamiltonian (Eqn. (6.1)) that will describe the Fe2+ ions in 

the ZnSe lattice sufficient for our purposes. The metals in the first transition series of the 

periodic table can be described by Russell-Saunders coupling since the spin-orbit 

interaction is weak compared to the Coulomb interaction between the electrons. In 

Russell-Saunders coupling, L and S are treated as good quantum numbers, and the spin- 

orbit interaction Hamiltonian has the form k(c-s) [26]. The terms in Eqn. (6.1) are 

arranged in order of decreasing interaction strength. Eqn. (6.1) along with appropriate 

orbital wavefunctions (that will not be discussed here) can be used to calculate the energy 

Kinetic + Coulombic Potential First and second- 
potential repulsion energy of the order spin-orbit 

energy of the energy electrons in the interaction energy 
electrons between the field of the 

orbiting the electrons in ZnSe crystal 
nucleus their orbitals 
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spectrum for Fe2+ impurities in ZnSe. Detailed calculations for the energy levels using 

this Hamiltonian can be found in Refs. 127-291 and will be summarized next. 

The ZnSe crystal field splits the Fez+ free-ion atomic terms according to the Tanabe- 

Sugano diagrams [28]. These diagrams are derived using the first three terms of Eqn. 

(6.1). The Tanabe-Sugano diagrams are expressed in terms of the multi-electron free-ion 

atomic terms (energy states), the crystal field split terms, the crystal field strength 

parameter (A = lODq), the energy (E) of each crystal field split term, and two of the 

Racah [28] parameters (I3 and C). Each of these quantities will now be discussed in the 

context of Fe2+:ZnSe. 

The multielectron atomic terms or energy states for a free Fe2+ ion can be determined 

by first tabulating the allowed combinations for the z-components of the individual 

orbital (mi) and spin (m,) angular momenta for each of its six d electrons. Secondly, the 

individual m{s and m,'s for each allowed combination can then be summed to determine 

the allowed values for the z-components of the total orbital (Le. mL = Em,) and spin (i.e. 

= Em,) angular momenta. If we then use Eqns. (6.2) and (6.3) to group the values of 

mL=-L,-L+ 1, ... 0 ..., +L- l,+L 

ms = -s, -s + 1, ... 0 ..., +s - 1, +s 

mL and ms we can determine the L and S combinations that arise. The L and S 

combinations or states are written as *'+'L. 2S+1 is the spin multiplicity of the term. L is 

the letter designation of the total angular momentum of the term with the total angular 

momentum given by 4-h. For historical reasons, letter symbols are given to the 

terms according to the value of L as designated by: 
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Lvalue= 0 1 2 3 4 5 6 ... 

Term symbol: S P D F G H I ... 

Table 6.1 lists the terms in order of increasing energy for a Fe2+ free-ion. The term 

with lowest energy can be determined using Hund's first rule that states that the term 

with the highest spin multiplicity (Le. 'D) will be lowest in energy. The relative energies 

Table 6.1. Energy states for 
a k2+ (d6) free-ion in the 
RussellSaunders coupling 
scheme. 

Fe2' t e r n s  

'S, 'D, 'G 

*, 9 

'S, 'D, 'F, 'G, 'I 

9, %, 9, %, %I 

SD 

Energy T 
of the other terms are discussed in [27]. The only term of interest for 3-5 pm transitions 

is the 5D term because, as we will see, this term is split by the ZnSe crystal field into 

states that are separated by about 2800 cm-' [22]. The rest of the terms have splittings 

that lie above the 'D term at energies much larger than 2800 cm-' [22,29]. 

Group theory can be used to determine the effect a tetrahedral crystal field has on a D 

state such as the 5D for Fe2'. A tetrahedral field has Td symmetry in the cubic point 

group [27]. By calculging the characters of the matrices that express the effect of the Td 

symmetry operations on a D state (L=2), we can determine the irreducible representations 
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that span a D state and thus the states that ’D splits in to. The details of this calculation 

can be found in many books and so we will only quote the final result [26-28,301. A 

tetrahedral crystal field splits a free-ion D state into the E and T2 ineducible 

representations or states. The E state is doubly degenerate and the T2 state is triply 

degenerate [27]. For the case of Fez+, the free-ion ’D state has L = 2 and S = 2. 

However, for the resulting split E and T2 states, the angular momentum (L) is no longer a 

good quantum number because the tetrahedral crystal field partially lifts the degeneracy 

in the mL states of 5D [31]. The crystal field does not affect the spin and therefore spin is 

still considered to be a good quantum number and since both split states will have S = 2, 

the split states are labeled as 5E and 9 2 .  

The splittings for all the Fez’ free-ion states in a tetrahedral crystal field environment 

are shown on the Tanabe-Sugano diagram in Fig. 6.1 [28]. The relative values for the 

energies of the split states are specified in terms of E/€3 as a function of A/B. The crystal 

field strength parameter (A = 1ODq) specifies the size of the energy perturbation due to 

the crystal field [31] and here E is the absolute energy of the states measured in cm-’. In 

the case of Fe2+:ZnSe, Dq can be expressed for a tetrahedral arrangement of Se2- point 

charges surrounding the Fe2+ ion by 

280e2 O0 

105a o 
Dq=- jR:d(r)r4r2dr (6.4) 

where R&(r) is the radial part of the Fe” 3d orbitals, a is the distance between the Fe” 

and Se2- ions in the crystal, r is the distance from the center of the Fe2+ ion, and e is the 

charge of the electron. TheR:,,(r) functions are not the hydrogenic 3d atomic orbitals 
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due to the interaction of the Fe2+ ion with the ZnSe crystal and the exact form of the 

R:d(r)functions is not known. Therefore, the value for Dq is usually determined 

experimentally from spectroscopic measurements. 

0 10 20 
a 30 40 50 

A/B 
Figwe 6.1. Tanabe-Sugano diagram for a Fez* ion (d6) in a tetrahedral field [28]. 

The interaction energies of the electrons in the free-ion involve ten integrals over the 

wavefunctions of the electrons [28]. For d-electron systems, the interaction energies 

between the electrons can be reduced to three combinations of the ten integrals and these 

three combinations are known as the Racah A, B, and C parameters [28]. Linear 

combinations of the Racah B and C parameters are equal to the energy differences 

between the free-ion states (far left of Fig. 6.1). The Racah B and C parameters refer to 

the energy differences that occur between states that have different spatial symmetries 
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and therefore have different values for the non-spherical repulsion energy of the electrons 

in the partially filled orbitals [3 11. If the ratio C/B is known, then the energy differences 

between the free-ion terms can be expressed solely in terms of B. The individual values 

for the B and C parameters can be readily determined from experiments conducted, for 

instance, with gaseous free-ions. The ratio of C/B for the free-ions of the first transition 

series have been found to have values that lie between 4 and 5 with only small variation 

(~10%) between the different ions [28]. 

The vertical separations in energy of the states on the left side (Le. A = 0) of the 

Tanabe-Sugano diagram in Fig. 6.1 are determined from the values of B and C. In the 

derivation of the Tanabe-Sugano diagrams, a free-ion value for C/B = 5 is assumed which 

eliminates C as a parameter in the calculation [28]. The free-ion value for C/B is a good 

approximation for transition metal ions that are in crystals because the orbitals in the 

crystals do not deviate by a large amount from the free-ion orbitals [28]. A value for C/B 

= 4.61 was used in the calculation of the diagram in Fig. 6.1. A further simplification in 

the calculation of the Tanabe-Sugano diagram is accomplished by dividing the energy 

= matrix (Hamiltonian) by the Racah parameter B [28]. The calculated energy eigenvalues 

are then in units of B (i.e. EYB). Note that the energy then becomes a function of AB and 

so the energy of the terms (E/B) are plotted vs. AB on the Tanabe-Sugano diagrams. 

It is expected from results for C?:ZnSe [24] and the Fe2+ free-ion value for B (917 

cm-') that A/€3 < 10 for Fe2+:ZnSe which implies that its ground state will be the 'E state 

and the first excited state will be 9 2  according to Fig. 6.1. One of the goals of this 

spectroscopic study is to determine where Fe2+:ZnSe is in the range 0 AE3 < 27 on the 

Tanabe-Sugano diagram. We expect the energy separation between the 5E and 'T2 states 
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in Fe2+:ZnSe to be -2800 cm-' and since this is the only transition in the wavelength 

range we desire (4 pm), we will now focus solely on the fine structure of the 'E and 'T2 

states. 

The work by Slack et al. [20] suggests that accounting for spin-orbit interactions to 

2"d order is sufficient enough to describe the observed spectra of Fe2' ions in crystals like 

ZnSe. The Hamiltonian given in Eqn. (6.1) has two terms that give rise to lst and 2" 

order spin-orbit splittings. Group theory can be used to calculate the representations or 

terms that the 'E and 9 2  states are split into by the spin-orbit coupling [20,27]. The first 

thing that is needed is the Td symmetry group representation for S = 2. Angular 

momentum that is equal to 2 can be represented by the combination (E+T2) [32]. The 

spin-orbit operator in the Hamiltonian has the form of L.S. Given this form 

(multiplication) for the spin-orbit operator, we can determine the terms that the k and 

9 2  states split into by multiplying the characters of the S = 2 spin representation (E+T2) 

by the characters of either the 'E (orbital doublet) or 9 2  (orbital triplet) states. The 

characters of these repnxentations in the Td symmetry group can be found in standard 

group theory character tables [27]. The terms that k and 9 2  split into are the terms in 

the Td group whose linear combination have characters that are equal to the characters of 

either (E+T2) x 'E or (E+T2) x 9 2 .  Performing this procedure we obtain: 

(E+T2)x5E=A1 +A2+E+Ti  +T2 

(E+T2) x 9 2  = A1 + E + 2Ti + 2T2 

The eleven states on the right are the total number of spin-orbit states that the 'E and 9 2  

states could be split into by the spin-orbit coupling. One thing to note about these spin- 
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orbit states is that they have lost their spin designation because spin is no longer a good 

quantum number due to the spin-orbit coupling. 

Calculations by Low and Weger [32] and Baranowski et al. [29] find that the spin- 

orbit states of the 'E term are not split in the 1'' order spin-orbit coupling but split into 

equally spaced levels in the 2d order coupling. The spin-orbit states of the 9 2  term split 

in both 1" and 2d order and have various spacings [32]. Adopting this general scheme 

for the spacings of the split states, a partial energy level diagram for Fez' in a tetrahedral 

field showing the crystal field splitting and the first and second-order spin-orbit splitting 

of the 'D free-ion state is shown in Fig. 6.2. The spacings for the ?z spin-orbit states 

should not be regarded as exact but are schematically shown based on general trends 

found in the literature [20,21,32]. 

Baranowski et al. [29] have derived expressions that can be used to calculate the 

energy spacing of the 11 spin-orbit states shown in Fig. 6.2. The expressions are in terms 

of the crystal field strength parameter (A) and the spin-orbit interaction parameter (A). 

Choosing level 6 to be at "zero" energy, Eqns. (6.5) - (6.14) give the energy spacing 

between level 6 and the other 10 spin-orbit states. Their calculation only accounts for 

crystal field and spin-orbit effects and neglects effects like the static Jahn-Teller effect 

1201, the Ham effect 1291. etc. The notation E(i6) specifies the energy difference between 

experimentally measured absorption and emission spectra. 

We are interested in the optical transitions between the spin-orbit states in Fig. 6.2 so 

the transition selection rules between these states are needed. Group theory can be used 

to determine the selection rules for electric dipole transitions between the spin-orbit states 

in Fig. 6.2 [27]. We will only consider electric dipole transitions. The electric dipole 
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Free-ion Tetrahedral First and Second-Order 
state Crystal Field Spin-Orbit 

Figure 6.2. Splittings of the 5D free-ion state due to a tetrahedral crystal field and spin- 
orbit coupling. The spin-orbit levels are labeled 1 through 11 for convenience and their 
group theory symmetry state is also given. The energy difference J+j) is not to scale. 
The labeling of 4Dq and 6Dq is standard for cubic crystal fields [27]. 

splitting splitting 
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operator in the Td symmetry group has TZ symmetry. This is because the dipole operator 

transforms like a spatial coordinate (x,y,z) and the spatial coordinates in the Td symmetry 

are represented by T2. This can be found in standard group theory character tables [27]. 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.1 1) 

(6.12) 

(6.13) 

(6.14) 

A transition between two states is allowed when the result of the multiplication of the 

characters of the two states contains the character of the dipole operator, Tz. This then 

-implies that the subsequent multiplication by the dipole operator will make the integrand 

contain the totally symmetric representation A1 and the result of the integration can be 

non-zero. The integrand must contain A1 symmetry to be non-zero since A1 possesses the 

full symmetry of the group. Table 6.2 gives the electric dipole selection rules between 

the states shown in Fig. 6.2. 

Up to this point we have treated the crystal field as due to a static or motionless 

arrangement of charges. In reality for a system like Fe2+:ZnSe, the ZnSe lattice is 
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Table 6.2. Selection rules for electricdipole transitions between the spin- 
orbit levels in Fig. 6.2. 

F = forbidden and A = allowed. 

vibrating. Therefort the Fez+ ions "see" a vibrating crystal field. Since the optical 

transitions that we are interested in occur in the d orbitals and these are the same orbitals 

that bond Fez' to the ZnSe lattice, we can expect the vibration of the lattice to produce 

noticeable effects in the spectra [30]; Henderson and Imbush [30] discuss how the 

vibration of the host crystal can cause broadening in the absorption and emission spectra 

and shorten the luminescence lifetime and that these effects depend on the temperature of 

the crystal. The temperature dependent effects in the spectra depend on the strength of 

the vibrational coupling. Typically [33], at low temperatures, say 10 K, the spectra are 

narrower and have a Pekarian form and at higher temperatures, say 200 K, the spectra are 

broader and have a Gaussian form [30]. The effects are usually much more apparent for 

transition metal ions than for rare-earth metal ions since the optical transitions in rare- 

earth ions typically occur in orbitals (f-shell) that are shielded from the crystal field by 

the bonding orbitals. With the foresight that we will encounter these effects in the spectra 

of Fe2+:ZnSe, we would like to now develop a simple model that we can use to quantify 

these effects [34]. 



The vibrational modes of Fe2+:ZnSe will be treated as harmonic or in other words 

described by harmonic oscillators. However, the bonds between the Fe2+ ions and the 

ZnSe lattice will not be treated like they have potential energy that is proportional to x2. 

A simpler but still useful model is to assume that the potential energy of the coupling 

between the Fez' ions and the ZnSe lattice is linear in the displacement between the Fez+ 

and Se2- ions, i.e. proportional to x. This assumption is the basis for the "linear-coupling 

model" [35]. (The assumption is equivalent to using only the first term in a Taylor series 

expansion for the coupling potential energy.) Results from experiments on other 

materials indicate that this model is in general a reasonably good description of the 

physical situation [33,34,36]. The major result of the linear coupling model is that the 

excited states of the system have an increased equilibrium distance between the ions but 

have the same energy as if there were no vibratioml coupling. 

6.2.2 Configurational coordinate diagram 

A simple pictorial description of the linear coupling model is a configurational 

coordinate diagram. A basic configurational coordinate diagram is shown in Fig. 6.3. On 

the diagram two curves are drawn as a function of the configurational coordinate Q, one 

that represents the adiabatic potential energy surface for the ground state and one for the 

excited state. The configurational coordinate (Q) represents the equilibrium position of 

the ions in the lattice. Note that the ground state and the excited state have different 

values for Q, Q(g) and Q(e) respectively. The horizontal lines in each of the curves 

represent the equally spaced vibrational levels of the system. The vibrational levels are 

equally spaced because we are assuming that the ground state and the excited state have 

the same vibrational frequency o, (Le. the Rhys approximation of only a single 
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vibrational mode [30]). Ezp~ is the transition energy of the "zero-phonon line". A zero 

phonon line corresponds to a transition that occurs without the emission or absorption of 

lattice vibrational energy (phonons). Optical transition are represented by vertical lines 

on the configuration coordinate diagram because, in accordance with the Franck-Condon 

principle [30], electronic transitions (i.e. optical) occur much faster than the change in 

positions of the nuclei. 

The intersection of the ground and excited state on the configurational coordinate 

diagram provides a path for nonradiative relaxation from the electronic excited state to 

the ground state. The nonradiative processes that couple the excited state to the ground 

state are thermally-activated @e. a function of temperature). The energy of the crossing 

point (EA as measured on the diagram) is the lattice thermal activation energy required to 

change from the excited state configuration to the ground state configuration [35]. 

Another way to look at this is that EA is the energy barrier that the lattice must overcome 

in order to change from the excited state configuration to the ground state configuration 

[35]. The thermal activation energy (EA) is related to the thermally induced nonradiative 

transition rate (W,) by [34] 

(6.15) 

where W:r is the high temperature thermal nonradiative transition rate, k is Boltzmann's 

constant, and T is the temperature in Kelvin. Eqn. (6.15) has units of s-'. The total 

transition rate out of the excited state, which is sum of the radiative and the nonradiative 
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Q@ Q(e) 
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Figure 6.3. Basic configurational coordinate diagram based on the linear coupling model 
[30]. - 

absorption 

S tbkes zkro 
phonon shift 
line 

Configurational Coordinate 

Figure 6.4. Relation between the configurational coordinate diagram and the low 
temperature spectra showing the zero phonon line and the Stokes shift [30]. 
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rates give the luminescence lifetime. The total transition rate [36] (Wmd) can be written 

as 

W d  = Wrpdibw + w, (6.16) 

where Wradidvt is the transition rate for emission of photons and Wnr is the nonradiative 

rate. For Fe*+:ZnSe, we will assume that Wnr is given by Eqn. (6.15) since the non- 

radiative processes in this system are thermally-activated (phonons) [20,21]. The 

luminescence lifetime is equal to the inverse of WM as given by 

(6.17) 

The luminescence lifetime is the lifetime that will be measured by experiments. 

& in Fig. 6.3 is the vibrational energy that is released after a transition occurs along 

the vertical line at Q(g) and the system relaxes to equilibrium [37]. E&s can be related to 

the characteristic phonon frequency, a,, by 

& = (m +1/2)tio, (6.18) 

where m is an integer that designates the vibrational level. It is standard to use Eqn. 

(6.18) to define the Huang-Rhys parameter (S) [30] as 

(6.19) 

Therefore, S is the number of phonons emitted after an absorption transition takes place 

along the vertical line at Q(g). Values for S e 6 are referred to as the weak coupling 
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regime and values > 6 as the strong coupling regime. These regimes for S are based on 

low temperature spectra where for values of S < 6 the zero phonon line can be seen along 

with the phonon sideband and for values of S > 6 the zero phonon line cannot be S e n  and 

the phonon sideband totally dominates the spectra [30]. An average value for S will be 

determined for Fe2+:ZnSe from the data collected in this study. 

Two very useful relations can be derived among the various parameters that are 

labeled in Fig. 6.3. By treating Q(g) and Q(e) as the displacements of harmonic 

oscillators that represent the ground and excited states, respectively, an expression can be 

derived that relates the Huang-Rhys parameter to Q(g) and Q(e) as 

(6.20) 

where M is an effective ionic mass and O, is the phonon frequency of the system. We are 

implicitly assuming in the linear coupling model that there is a single vibrational mode, 

which is the fully symmetric "breathing mode" [35]. In the breathing mode, the Fe2+ ion 

is stationary and the Se" ions vibrate radially in-phase. If we choose the distance 

between the Fe2+ ion and its Se2- nearest neighbors to be Q/2, then the mass (M) in Eqn. 

(6.20) is equal to the mass of Se2-. The term (Q(e) - Q(g)) is referred to as the Condon 

offset and describes how much the excited state is displaced horizontally from the ground 

state on the configuration coordinate diagram. An expression for EA can also be derived 

by treating Q(g) and Q(e) as the displacements of harmonic oscillators and using the 

definition of S in terms of Edis. EA is then given by 
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(6.2 1) 

Both Eqn. (6.20) and (6.21) will be used in the analysis of the experimental data. 

The horizontal displacement of the curves in Fig. 6.3, (i.e. the different values of Q) is 

a direct result of the linear nature of the coupling between the Fe2+ ions and the 

vibrations of the host lattice. (When a potential that is linear in displacement is added to 

a harmonic oscillator potential, the effect on the harmonic oscillator is that its excited 

state energy remains the same but the equilibrium displacement of the state is changed, 

i.e. Fig. 6.3) The displacement in Fig. 6.3 produces sidebands in the spectra as shown in 

Fig. 6.4. Another way to see how these sidebands arise is to realize that the vibration of 

the lattice about the Fez' ion modulates the optical transition by ob, which in Fourier 

theory amounts to putting frequency sidebands in the transition's frequency spectrum. 

Phonon sidebands appear in both the absorption and emission spectra. The peak in the 

phonon sideband in the absorption spectrum occurs at an energy that corresponds to the 

length of the upward arrow labeled "a" in Fig. 6.4. The peak in the phonon sideband in 

the emission spectrum occurs at an energy that corresponds to the length of the 

downward arrow labeled "e" in Fig. 6.4 hence the phonon sideband peak is at a lower 

energy than the zero phonon line. The difference in energy between the peak in the 

phonon sideband in the absorption spectrum and the peak in the phonon sideband in the 

emission spectrum is defined as the Stokes shift as shown in Fig. 6.4. If the ground and 

excited states have equal phonon energies, as we are assuming in the Rhys 

approximation, the absorption and emission spectra will have sideband peaks that are 

equidistant in energy from the zero phonon line. In this case, the Stokes shift [26] is 
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related to the Huang-Rhys factor (S) and the lattice phonon energy ( h a )  by, 

Stokes shift (cm-') = (2s - 1 ) h a  (6.22) 

6.3 Spectroscopy experiments and results 

6.3. I Sample preparation 

Samples of Fe2'doped ZnSe were produced by two methods. A boule of Fe2':ZnSe 

was grown by Eagle-Picher Research Laboratory, Inc. using the modified vertical 

Bridgman growth method. The melt was about 0.06 at.% rich in M e .  The modified 

vertical Bridgman growth method [38] entails taking a sealed graphite ampule 

containing powdered ZnSe and FeSe in the desired proportions and slowly passing this 

ampoule vertically through a hot melting zone and then a cooling zone where the contents 

in the ampoule crystallize into Fe2+:ZnSe. This method has the advantage that large 

crystals can easily be obtained because of the relatively fast growth rate. The boule 

produced by Eagle-Picher Research Laboratory, Inc. was approximately 12 mm long by 

20 mm in diameter and possessed an -100 percent concentration gradient (determined at 

LLNL using inductively coupled plasma and atomic-emission spectrometry (ICP-AES)) 

of Fe along the vertical direction. The boule was polycrystalline with single crystal 

domains as large as 3-4 mm3. Samples for spectroscopic analysis were cut mainly from 

the boules' single crystal regions in slabs approximately 2x10~10 mm3. 

Fe2+-doped ZnSe samples were also obtained using a diffusion doping method [39]. 

This process involves placing an -5~10x10 mm3 polished slab of ZnSe into a quartz test 

tube along with FeSe powder, evacuating and sealing the tube, and then heating the tube 
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Fe concentration 
(10'~ ~e a t 0 d m 3 )  Sample Method of production 

~ 

Fe%:ZnSe #12163 Bridgman 3.40 

and contents in a furnace at 10oO"C for approximately 5 days. Fe2+ ions diffuse into the 

ZnSe crystal material (with a diffusion coefficient of ~ 1 . 5 ~  IO" cm2/s) and substitute into 

the Zn2+ sites within the ZnSe lattice. The slabs of pure ZnSe are easily obtained from 

single crystal infrared window material. The diffusion doping process produces 

uniformly doped samples with the level of doping dependent on the diffusion time and 

temperature [25,39]. The diffusion doping process is attractive because it can produce 

homogeneous doped samples relatively simply and quickly with inexpensive and easily 

obtained starting materials and standard laboratory equipment. 

The concentration of Fe in several of the Fe2+doped ZnSe samples was measured at 

LLNL using ICP-AES. This analysis determined the total concentration of atomic Fe in 

the samples with an uncertainty of f1596 without regard to the oxidation state. Table 6.3 

lists the samples analyzed and the Fe concentrations. Sample #12163 was obtained from 

Fek:ZnSe #740 Diffusion doping 0302 

Fe*:ZnSe #12464 Dmion  doping 0.0282 

- 0.0272 Undoped ZnSe window 
i material 

the Bridgman grown boule. Samples #740 and #12464 were prepared by the diffusion 

doping method from ZnSe window material. The diffusiondoped samples have several 

orders of magnitude less Fe than the samples produced by the Bridgman method. 

Therefore, in order to be a viable alternative to Bridgman growth, the diffusion doping 
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method needs to be optimized (i.e. undoped slab size, starting chemical composition, 

heating time, etc.) to produce doping levels comparable to the Bridgman growth. 

6.3.2 Temperature dependent absorption spectra 

Unpolarized absorption spectra were collected on the set of Fe2+:ZnSe samples in 

Table 6.3. The spectra were measured at different temperatures for wavenumbers from 

2000-5000 cm-I using a Perkin-Elmer model 983 spectrophotometer. The spectra were 

collected with the samples mounted in an Air products Displex 202 closed cycle helium 

gas cryogenic system. The cryogenic system could vary the sample's temperature from 

approximately 14 K to 300 K. The sample in the cryogenic mount was positioned into 

the spectrophotometer's sample compartment and then spectra were measured at various 

temperatures. The spectrophotometer measured the absorption of the sample in units of 

optical density (OD). The optical density values were then converted to absorption cross- 

section (G&) using the relation that o-(A)= (0D'))(2.303) where N is the number 
NI 

density of J?e from Table 6.3 and I is the length of the sample. The measured absorption 

spectra for the Fe*+:ZnSe samples are presented in terms of absorption cross-section in 

Figs. 6.5 - 6.8. The sharp peaks in Fig. 6.5 between 2650 cm-' and 2750 cm-' are the 

zero-phonon transitions and the broad band extending >2800 cm-' is the phonon 

sideband. The values for the cross-sections for Fe2+:ZnSe are about an order of 

magnitude greater than that for Nd:YAG. 

The spectra in Fig. 6.6 illustrate how the broadening due to the vibrational coupling 

of the Fe2" ions with the ZnSe lattice increases with temperature. The broadening is due 
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to the thermal increase in population in the upper spin-orbit and vibrational levels of the 

'E state. 

Figure 6.7. 

Wavenumber (an-') 

Unpolarized absorption spectrum at 13 K for Fe2+:ZnSe sample #740. 

Wavenumber (cm-I) 

Figure 6.8. Unpolarized absorption spectrum at 13 K for Fe2+:ZnSe sample #12464. 

The features in Fig. 6.7 (zero-phonon lines and phonon sidebands) are the same as in 

Fig. 6.5. This means that Fe2' was able to substitute for Zn2+ which suggests that 
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diffusion doping is a very viable method to produce Fe2':ZnSe. Though the sample in 

Fig. 6.8 had a very low concentration of Fe (Table 6.3), its absorption features still very 

closely resemble those of Fig. 6.5 meaning that even the small amount of iron that did 

diffuse in substituted into Zn2+ sites. The spectra presented here for Fe2+:ZnSe suggest 

that an Er:YAG laser operating at 2.7 pm (3703 cm-') would be a possible pump source 

for the emission and lifetime experiments. 

6.3.3 Temperature dependent emisswn spectra 

Unpolarized emission spectra were measured at different temperatures for Fe2+:ZnSe. 

Fig. 6.9 shows the experimental setup used to measure the emission spectra at different 

temperatures. The &YAG laser operated at a wavelength of 2.698 pin (3706 cm-') and 

delivered 48 ps long pulses at a repetition rate of 100 Hz. The data was collected with a 

computer controlled 1 meter McPherson monochromator equipped with a 300 g/mm 

grating, an EG&G Judson liquid nitrogen cooled InSb detector, and a lock-in amplifier. A 

measured unpolarized emission spectrum at 34 K for Fe*+: ZnSe is shown in Fig. 6.10. 

The measured emission spectra for Fe*+:ZnSe at different temperatures are presented 

in Fig. 6.12. The emission data has been corrected by the measured black-body response 

of the experimental apparatus and normalized to one. The peaks in the emission 

spectrum in Fig. 6.10 for wavenumbers >2675 cm-' are the zero phonon transitions and 

the broad band with wavenumbers 4 6 7 5  cm-' is the phonon sideband. In Fig. 6.1 1, we 

include the absorption spectrum at 14 K that has been normalized to one to illustrate the 

relation between the emission and absorption wavelengths. Fig. 6.12 shows how the 

emission spectrum for Fe2+:ZnSe varies with temperature. The FWHM of the emission 
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spectra for Fe2+:ZnSe varies from about 300 cm-' at 34 K to 500 cm-' at 172 K. This 

would suggest a potential tunability for Fe2+:ZnSe between 300 cm" to 500 cm" 

depending upon the temperature. We also note that above 225 K no luminescence was 

observed from Fe":ZnSe. 

6.3.4 Temperature dependent luminescence lifetimes 

The luminescence lifetime data in Figs. 6.14 - 6.17 was collected with the 

experimental setup shown in Fig. 6.13. In order to check reproducibility, the lifetime 

Figure 6.13. Experimental setup to measure the temperature dependent luminescence 
lifetimes. 

data were taken several times and found to be repeatable to d5%. The decline in 

lifetimes in Fig. 6.14 for temperatures between 100 K and 240 K is due to increased 

thermally-activated non-radiative decay described by Eqn. (6.15). The dramatic decline 

in lifetimes with decreasing temperature below 100 K was unexpected, however this 

same kind of effect has been seen much less dramatically for C?+:ZnSe and Co2+:ZnSe in 

Ref. [24]. No discussion of the effect was given in Ref. [%I. We suspect the effect is 
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either due to thermal redistribution of the emitting population into levels with different 

radiative lifetimes or radiation trapping. 

Radiation trapping [26] occurs when the neighboring ions to an emitting ion absorb 

and re-emit the photons causing the photons to random walk out of the material. The 

effect of the photon random walk is to increase the measured luminescence lifetime. This 

only occurs with three-level and quasi-three level transitions because under certain 

conditions (i.e. high enough temperature) there can be a thermal population in the 

terminal level to cause the re-absorption. The radiation trapping effect depends on three 

variables, the thermal population in the terminal level, the number density of emitting 

ions, and the physical size of the sample. A smaller sample will have less radiation 

trapping effects (i.e. a shorter measured lifetime) for a given level of doping since the 

photon random walk will be shorter. To see if the measured lifetime was affected by the 

sample size we performed measurements on samples of differing sizes. The data in Fig. 

6.15 shows how the decreasing thickness of the samples can be seen to significantly 

reduce the variation of the luminescence lifetimes for temperatures between 14 K and 

110 K. Therefore we conclude that the decrease in measured lifetime for temperatures 

below 100 K is primarily due to radiation trapping. 

Figs. 6.16 and 6.17 show the luminescence lifetimes measured for the diffusion doped 

samples. The diffusion doped samples have the same approximate values for the 

luminescence lifetime and behavior with temperature as the Bridgman grown samples. 

The sample in Fig. 6.17 has very low Fe concentration (Table 6.3). So in this case, the 

effect of radiation trapping is decreased through the reduced concentration of Fe2'. The 
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reduced concentration of Fe2+ means there are spatially fewer ions to reabsorb the emitted 

photons and therefore the random walk of the photons is shorter. 

6.4 Analysis and discussion 

6.4.1 Emission cross-sections 

The emission spectra in Fig. 6.12 were converted to cross-section using the Einstein 

relation [40] 

(6.23) 

where n = refractive index for ZnSe = 2.4, I@) is the blackbody-calibrated emission 

spectrum, and 2 4  is the radiative lifetime of the transition. The radiative lifetime was 

taken as the luminescence lifetime at 20 K (49 p) in Fig. 6.14. At 20 IC, radiation 

trapping effects and thermal non-radiative processes should be at a minimum, therefore it 

is reasonable to assume that the luminescence lifetime at 20 K would most closely 

resemble the radiative lifetime. Therefore 49 p will serve as our best estimate of the 

radiative lifetime. Fig. 6.18 shows the converted emission spectra for Fe2+:ZnSe in terms 

of cross-section. 
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Figure 6.18. Unpolarized emission cross-sections at temperatures between 30 K G d  180 
K for Fe*+:ZnSe sample #12163. 

6.4.2 Zero-phonon lines 

In Fig. 6.19 we show an expanded view of the absorption spectrum from Fig. 6.5 with 

several zero-phonon lines labeled. The notation E<i-j) follows that discussed for Eqns. 

(6.5) - (6.9) except for EQ1-71, which designates the energy difference between levels 1 

and 7 in Fig. 6.2. Our labeling of the particular features in Fig. 6.19 in general follows 

that of Ref. [20] and [29]. The decrease in cross-section of lines 61-6) through Q5-6) 

reflects the thermal distribution (Boltzmann) of population over the lower levels. Table 

6.4 lists the lines identified, their corresponding energies, and the results from Ref. [29] 

for comparison. The energy values for the first four lines agree within experimental errors 
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zero-phonon lines labeled. 

of those found by Ref. [29]. E ( s ~ )  and q1-3 were not identified in Ref. [29]. Our 

identification of the feature at 2624 cm-' as corresponding to 45-61 may not be correct. 

The 5 + 6 transition is symmetry forbidden and level 5 in the lower manifold would 

have very low (e fractional thermal population at 14 K. These two factors would 

make the intensity of the Q541 line virtually imperceivable in the spectrum and therefore 

very difficult to identify relative to the other lines that have fractional populations L 

The peak at 2804 cm-' was assigned as &I-7) because it is relatively narrow. However, 

the strength (i.e. cross-section value) of the line makes the assignment suspect because 

the 1+7 transition is symmetry forbidden. Further consideration is needed to confidently 

regard the feature as E(1-7). Note that the spacing between the first 4 lines in Table 6.4 is 
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Transition 

Table 6.4. 
Fe2+:ZnSe. 

Energies of several zero-phonon lines for the 'E+'T2 transition in 

Enery 
(cm- ) (cm-') 

Baranowski et al. [ 111 

Q1-6, 

Elur 
2738 f 2 2738 
2720 f 2 2721 

L .- -I 
&sa 2708 f 4 2710 
E U r  2692 f 4 2695 

relatively constant (-15 cm-') which agrees with what can be predicted from Eqns. (6.5) - 

(6.8). We would also expect lines and to be spaced by the same amount. 

However, from Table 6.4 we find that the spacing is 68 cm-I. This discrepancy is most 

likely due once again to the difficulty in properly assigning the E(541 line in the spectrum. 

6.4.3 Laffice phonon energies 

We will use the phonon sideband in the low temperature absorption spectrum to 

estimate a characteristic phonon energy for Fe*+:ZnSe. We are assuming for simplicity 

that the sideband peaks are due to coupling to a single vibrational mode, which is not 

exactly the case since several modes are most likely participating in the coupling [35], 

however we are simply trying to estimate a consistent value for a characteristic phonon 

energy. In Fig. 6.20 we label the peaks in the absorption spectrum that we identify as E(1- 

6) combined with one lattice phonon of energy hope& A = 182 & 34 cm-I and 

combined with two lattice phonons each with energy B = 225.5 It 25 cm-I (Le. 2 x 

225.5 cm-' = 451 cm-I. Note that we choose here to regard this as coupling to two 

phonons rather than a single phonon with energy 451 cm-I because ZnSe has phonon 

frequencies that are 5 300 cm" [41].). The uncertainties were found by estimating the 
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widths of the peaks used to determine the phonon energies. Note that the values for 

fiw A and fili)peak agree within the experimental uncertainty, which may imply that the 

two peaks are coupling to the same vibrational mode. 
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Fi re 6.20. Low temperature unpolarized emission and absorption spectra for 
Fe g. .ZnSe with the dominate sideband transitions in the absorption spectrum labeled. 

We also label in Fig. 6.20 (dashed arrows) where the corresponding peaks in the 

emission spectrum would appear for this same characteristic phonon energy. Note that at 

Q-6) - 182 cm-' and h1-6) - 451 cm-' there does not appear to be distinct corresponding 

peaks in the emission spectrum. We would expect the excited state to have smaller 

phonon energies than the ground state [35] since the excited state has a larger inter-ion 

distance (between the Fe2+ and Se2- ions) which results in a lower bond strength and 
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Phonon energies for Fez+:ZnSe deduced from 
the absorption spectrum in this work 

(an-') 

therefore a lower bond vibrational energy (Le. lower phonon energies). Therefore the 

lack of corresponding peaks in the emission spectrum is not physically unreasonable. In 

Table 6.5, we compare the phonon energies found from Fig. 6.20 to values determined by 

Hennion, et al. for ZnSe [41]. Hennion, et al. measured the energies for the longitudinal- 

optical (LO) and transverse-optical (TO) phonons in ZnSe using inelastic neutron 

scattering [42] and found good agreement with values from other researchers. Inelastic 

scattering would yield phonon energies in the ground state, which would imply that, the 

phonon energies determined by Hennion, et al. should be larger than the values 

Phonon energies for ZnSe 
found by Hennion et al. E241 

(cm-' 

h ~ n ,  = 213 

h(i)Lo=253 
~ ~~ ~ 

TO = transverse-optical and Lo = longitudinal-optical. 

determined here from the absorption spectrum (which measures the phonon energies in 

the excited state). Upon examination of the values in Table 6.5, we see that the phonon 

energies determined here from the absorption spectrum are indeed lower in value than 

those determined by Hennion, et al. which is consistent with what we physically expect. 

6.4.4 Tanabe-Sugano diagram 

Combining the energies of zero-phonon lines &I&) and E + 2 4  given in Table 6.4 with 

Eqns. (6.5) and (6.6), we can calculate values for the crystal field strength parameter (A) 

and the spin-orbit interaction parameter (h). We choose to use and E$*&) in the 
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k 

Parameter Calculated value 

A 2937 f 200 cm" 

h -94 f a m-' 

calculation because we know these energies most accurately. Table 6.6 lists the 

calculated values for A and A. The value for h of -94 cm" is approximately 10% smaller 

than the Fez+ free-ion value of -103 cm-' 1291. This reduction in the value for h from the 

free-ion value occurs because the interaction with the crystal field has modified the 

electrons' wavefunctions, which when used to evaluate the matrix elements of the 

Hamiltonian involving the spin-orbit operator results in a lower spin-orbit interaction 

strength (i.e. smaller magnitude for h) [26]. The negative sign for h is expected because 

a d6 ion has a more than half-filled d-shell[43]. 

Using A from Table 6.6 and the Fez+ free-ion value for the Racah B parameter (917 

cm-'), we can determine AB and JYE3 for Fe2+:ZnSe on the Tanabe-Sugano diagram. The 

value calculated for #I3 is 3.2. Since the line that represents the 3 2  state in Fig. 6.21 has 

unity slope in the range A/E c 27, A/E = 3.2 implies E/B = 3.2. The position E/B = 3.2 

and AB = 3.2 is labeled in Fig. 6.21. Given the energy of the 5T2 state in Fe2+:ZnSe as 

shown on the Tanabe-Sugano diagram, the next higher state is -20,000 cm-' above it. 

Therefore, excited state absorption in Fe2+:ZnSe will be improbable because of the 

difference in spin multiplicity and the large difference in energy between the higher lying 

states and the 'Tz state. 
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Figure 6.21. Tanabe-Sugano diagram for a d6 ion in a tetrahedral field showing M3 and 
EYB for Fe2+:ZnSe determined in this work. 

6.4.5 Huirng-Rhys parameter and Condon offset 

An estimate for the Huang-Rhys parameter (S) can be determined by using the result 

in section 6.4.3 that the peak in the absorption spectrum at &ld) + 451 cm-' was due to 

coupling to 2 phonons. Using this information combined with Eqn. (6.18) (Le. m = 2) 

and Eqn. (6.19) we find S = 2.5. Another way to estimate the Huang-Rhys parameter is 

to note, as Henderson and Imbush do [30], that at T = 0 K, the area under the zero- 

phonon lines in the absorption spectrum is given by &,e-' where I,, is the area under the 

entire absorption spectrum. Therefore the Huang-Rhys parameter can be estimated using 
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Area under the zero phonon lines in the 14 K absorption spectrum 
Area under the entire 14 K absorption spectrum e-' = - (6.24) 

Calculating in a spreadsheet the areas from the absorption spectrum at 14 K in Fig. 6.5 

yields, 

83.4 & 30 cm 
1 162.2 cm 

e-' = = 0.072 f 0.026 (6.25) 

giving S 2 2.6 f 0.4 for Fc2+:ZnSe. This compares very well with the value of S = 2.5 

calculated from E,J,~. These values for S imply that the coupling between the Fez+ ions 

and the ZnSe lattice is in the weak coupling regime as discussed in section 6.2.2. 

The Condon offset (Q(e)-Q(g)) can now be calculated from Eqn. (6.20). Substituting 

= tf- B = 225 f 30 cm-' in Eqn. (6.20) S = 2.5 f 0.4, M = mass of a Se atom, and 

we find (Q(e)-Q(g)) s 0.0065 f 0.0019 A. This-estimate for the Condon offset will be 

used as a guide to construct the configurational coordinate diagram for the ?* and % 

states in Fez+:ZnSe. 

6.4.6 Thermal activation energy, EA 

The thermal activation energy (EA) can be estimated using Eqn. (6.21) with J&PL = 

E(1-6) = 2738 k 2 cm", S = 2.5 _+ 0.4, and A o ,  = h ~ p e ~ k  B = 225 f 30 cm-'. From Eqn. 

(6.21) we find EA = 2104 f 750 cm-'. Another method of determining EA is by fitting 

Eqn. (6.17) to the lifetime data presented in section 6.3.4 [34]. Of the three sets of data 

analyzed the data in Fig. 6.14 allowed the best fit to Eqn. (6.17). From the fit, we were 

able to extract values for the radiative transition rate (WdiatiVe), the high temperature 
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Lifetime fit 
parameter 
WdhtlVC 

w: 
EA 

thermal nonradiative transition rate (W,9), and EA. Table 6.7 lists the values obtained 

from the fit. 

Value 

13714 s-' 
1 . 4 4 ~  10 s- 

2171 cm" 

I t 1  

Table 6.7. Values resulting from 
fitting Eqn. (6.17) to the lifetime 
data in Fig. 6.14. 

The radiative transition rate (WM~) can be inverted to give a value for the radiative 

lifetime of 73 p. This value falls within the range of values measured for the 

luminescence lifetime below 200 K. Note that 73 p is about twice the value we assumed 

for the radiative lifetime in converting the emission spectra to cross-section. This would 

imply that our assumption for the magnitude of the radiative lifetime is at least within the 

.+ 

correct order of magnitude. Wz is the same order of magnitude as other values found in 

the literature [34]. The value for EA determined using Eqn. (6.21) and the value in Table 

6.7 show good agreement. The two values will be averaged and the average value will be 

used in the construction of the configurational coordinate diagram. AveAging the two 

values for EA (2104 and 2171 cm-') gives  EA"'^ = 2138 cm-'. 

6.4.7 Configurational coordinate dkgram 

The values found in the previous sections for the zero-phonon lines, the lattice 

phonon energy ( t 2 ~  B), the Condon offset (Q(e)-Q(g)), and the thermal activation 

energy (EA = were used to construct the scaled configurational coordinate diagram 
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for Fe2+:ZnSe shown in Fig. 6.22. In constructing the diagram, we assumed for 

simplicity that the 5E and 5T2 states have equal phonon energies of 225 cm-'. This was 

the value we determined explicitly from the absorption spectrum, however the 

assumption that phonons in the 5E state have this energy was neither proved nor 

------------. 

Configurational Coordinate Angstroms) 

.-. 

:738 cm 

-- 

Figure 6.22. Configurational coordinate diagram scaled to values determined in this 
study for the 9 2  and % states of Fk*+:ZnSe. The parabolas represent potential energy 
surfaces for spin-orbit levels 1 through 7 shown in Fig. 6.2. 

disproved by this work. The diagram in Fig. 6.22 illustrates the horizontal displacement 

between the 5E and 9 2  states due to the linear interaction between the Fe2' ions and the 

vibrating ZnSe lattice. 
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6.4.8 Energy level diagram 

The splittings in Fig. 6.2 are labeled with energy values in Fig. 6.23 based on the 

results from this spectroscopic study. The values for 4Dq and 6Dq were calculated from 

the value of A in Table 6.6 where A = lODq [27]. The relative separations between spin- 

orbit levels 1 through 5 and the separations between levels 6 through 1 1  are to scale. The 

separations and individual widths of the vibrational bands hopcak A and ti- are to 

scale. The ratio of the 4Dq and 6Dq separations are also to scale. However, the 

separations between levels 1 and 6 specified by E(t-6) etc. and the magnitudes of the 4Dq 

and 6Dq spacings are not to scale. 

The values for E ( 8 4  through q t 1 - 6 )  were calculated using Eqns. (6.1 1) - (6.14) and A 

and A from Table 6.6. The calculated values have uncertainties of SO%. The vibrational 

levels shown as thick bands (gray) on the far right of Fig. 6.23 represent the range of 

values determined for the phonon energies from the absorption spectrum. They should be 

regardad as the vibrational energies of phonons associated with level 6 and possibly level 

7 due to the close proximity of levels 6 and 7 (Le. 68 cm-'). The relation between the 

vibrational bands and levels 8 and 9 should be regarded as only coincidental since we do 

not know the positions of levels 8 and 9 accurately (i.e. an uncertainty of SO%).  

In deriving this energy level diagram we have neglected important effects like the 

static Jahn-Teller [20,21] and the Ham effect [26,32,44] which may have significant 

impact on the position of levels. Our main goal was to derive under simple assumptions 

a clear energy level scheme for Fe2+:ZnSe that is consistent with the low temperature 

spectra in order to gain an insight into the reasons for the behavior of the spectroscopic 
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Figure 6.23. Magnitudes for the splittings of the 5D free-ion state as found for Fe2+:ZnSe. 
E(8-6) through E(, 1-6) were calculated using Eqns. (6.1 1) - (6.14). The gray bands represent 
the range of vibrational energies determined from the absorption spectrum. 

properties with changing temperature. This simple diagram will also be useful in 

understanding the lasing properties of Fe2+:ZnSe at different temperatures. 
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6.5 Summary 

In order to evaluate the utility of Fe2+:ZnSe as a 3 - 5 pn laser material a 

spectroscopic study in this wavelength range was conducted. The material was found to 

absorb between 2650 nm and 3800 nm which implied that an Er:YAG laser emitting at 

2698 nm would be a suitable pump source for the emission, lifetime, and possible 

subsequent laser experiments. Upon excitation at 2698 nm, the material had a strong 

emission band between 3900 nm and 4600 nm, which suggests a potential laser tuning 

range over 700 nm. The luminescence lifetime was found to be very dependent on 

temperature with values that ranged from 49 ps at 14 K to 5 ps at 220 K. Fe2+:ZnSe did 

not luminesce for temperatures greater than approximately 225 K which suggests 

cryogenic temperatures will be necessary for laser operation. A configurational 

coordinate diagram and a detailed energy level diagram were constructed for the 'E and 

-2 states in Fe2+:ZnSe based on the spectroscopic results presented here. The 

encouraging spectroscopic properties for Fe*+:ZnSe determined here and the availability 

of an &YAG pump laser warranted further evaluation of Fe2+:znse as a potential 3 - 5 

prn laser material as will be discussed in the next chapter. 
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Chapter 7 

4.0 - 4.5 pm laser performance of Fe2+:ZnSe below 180 K 

First published as: J. J. Adam, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, a& S. 
A. Payne, "4.0 - 4.5 p lasing of Fe:ZnSe below 180 K ,  a new mid-infrared laser 
material, '' Optics Letters, 24, I720 ( I  999) 

7.1 Introduction 

The spectroscopic properties of Fe2+:ZnSe were studied in Chapter 6 in order to 

evaluate its potential as a 3 - 5 pm laser material. Measured values of -lo-'* cm2 for the 

absorption and emission cross-sections, luminescence lifetimes on the order of 50 ps, and 

the availability of an EcYAG excitation laser encouraged us to pursue lasing experiments 

with Fe2+:ZnSe. The Bridgman-grown Fe2+:ZnSe material (sample #12163) had the 

strongest proclivity to luminesce and also exhibited the longest luminescence lifetimes 

and so the laser studies focused solely on the Bridgman-grown samples. 

In the next section (section 7.2), we briefly review the spectroscopic properties of 

Fe2+:ZnSe most relevant to the lasing experiments. The Er:YAG laser used for the 

spectroscopic experiments had a maximum output energy of approximately 150 @/pulse. 

In section 7.3, we estimate the pump energy needed to reach laser threshold in a 20 cm 

confocal cavity containing Fe2+:ZnSe as the gain media. Section 7.4 describes our 

experimental laser test setup and the results from the lasing experiments with Fe2+:ZnSe. 

A summary of the results is given in section 7.5. 

7.2 Review of Fe2+:ZnSe optical spectroscopy 

As was discussed in Chapter 6, Fe2+:ZnSe does not luminesce for temperatures above 

approximately 225 K because of thermally-activated nonradiative coupling to the 
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vibrational modes of the ZnSe lattice. Therefore this mandates cryogenic laser (c 225 K) 

operation. We review in Fig. 7.1 the low temperature absorption and emission spectra 

measured for Fez+:ZnSe in the last chapter. The Er:YAG pump laser's wavelength (hUq) 

is labeled in the figure. We see from the overlap of the absorption and emission spectra, 

that at this temperature we would expect Fez+:ZnSe to have a lasing wavelength z 3.9 

pn. This wavelength is expected because in the range of emission wavelengths without 
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Figure 7.1. Unpolarized low temperature absorption and emission cross-sections for 
Fe2+:ZnSe sample #12163. The Er:YAG pump laser wavelength (b) of 2.698 pm is 
labeled. 

absorption loss this is where the emission cross-section is largest. The wavelength of the 

Er:YAG pump laser (2.698 pn) and the range of emission wavelengths for Fe2+:ZnSe 

were used to specify the spectral response of the dielectric coatings on the mirrors used to 

construct the laser test cavity. 

Fe2+:ZnSe was found to have a luminescence lifetime that varied with temperature as 
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shown in Fig. 7.2. The increase in lifetime from approximately 14 K to 110 K was found 

to be primarily due to radiation trapping (section 6.3.4) and the decrease in lifetime above 

Figure 7.2. 
#12163. 
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Luminescence lifetime as a function of temperature for Fe*+:ZnSe sample 

110 K is due to increasing thermally-activated nonradiative decay as described by Eqn. 

(6.15). The magnitudes (-10's p) of the lifetimes for Fe2+:ZnSe do not place any 

particularly demanding requirements on the pump laser's pulselengths. 

7.3 Laser threshold calculation 

Before procuring special cavity mirrors (i.e. highly transmissive at 2.698 pn and 

highly reflective at -4 p), we calculated the energy that the Er:YAG laser would need 

to deliver in order for the Fe2+:ZnSe laser to reach threshold. The estimate was based on 

the measured spectroscopic parameters for Fe2+:ZnSe at 14 K and a longitudinally- 

pumped 20 cm confocal cavity arrangement. Eqn. (7.1) [ 11 can be used to calculate the 
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incident pump pulse energy necessary to reach laser threshold, where vP is the frequency 

of the pump light, wp and w, are the pump and laser spot radii respectively, L is the 

passive cavity loss, T is the cavity output coupling, om is the 34 K emission cross-section 

at the laser wavelength (assumed to be 3.9 pm), qum is the luminescence lifetime at 14 K 

(49 p), Q is the 14 K absorption coefficient at the pump wavelength (a = N o h  = (3.4 x 

IOl9 Fe atoms/cm3)(0.296 x lo"* cm2) = 10.064 cm-'), L is the crystal thickness (0.198 

cm), and 2, is the pump pulse duration. This formalism neglects ground state absorption 

[1,21. 

The pump beam was focused into the crystal using a CaFz lens with a focal length of 

+20 cm. The pump spot size (wp) at the crystal was measured with a razor scan technique 

in the vertical and horizontal directions. The pump spot size used for the threshold 

calculation was 210 f 50 pn. This value is the average of the measured horizontal and 

vertical pump spot sizes at the crystal. The laser mode was assumed to be a Gaussian 

TEMm mode and its spot size within the Fe2+:ZnSe crystal was calculated using wL = wo 

E ( L M ~ Z ) ' ~  = 352 pm [3] where L = cavity length = 20 cm. The inaccuracies in knowing 

the pump and laser spot sizes at the crystal could introduce errors into the threshold 

calculation as high as 30%. 

We assumed a passive loss (L) of 0.10 and a cavity output coupling (T) of 0.005 for 

the threshold calculation. The 14 K Fe2+:ZnSe emission cross-section at 3.9 pm was 

determined from Fig. 7.1 to be 2.41 x lo-'* cm2. The Er:YAG laser emits at 2.698 pm in 
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48 ps long pulses at a repetition rate of 100 Hz. At 14 K, we calculate a threshold pulse 

energy of -8 pJ. The Er:YAG laser could supply an order of magnitude more energy (i.e. 

-150 pJ) than this estimated threshold value, therefore threshold was expected to be 

reached. In light of the compelling information determined for Fe*+:ZnSe, we decided to 

have dielectric mirrors fabricated that would be used to construct a laser test cavity 

around the cryogenically-cooled Fe2+:ZnSe crystal. 

7A E'ek:ZnSe laser experiments 

7.4.1 Lasing demonstration 

A diagram of the experimental laser test setup is shown in Fig. 7.3. A cryogenic 

chambex (Air Products Displex Model 202) containing the cooled Fe2+:ZnSe crystal was 

placed between two identical 20 cm spherical concave mirrors forming a 20 cm confocal 

cavity. The faces of the Fe2+:ZnSe crystal perpendicular to the cavity axis were uncoated, 

but polished to within 22 seconds of parallel. The sample was longitudinally-pumped 

using the Er:YAG laser which had an output energy of approximately 150 pJ/pulse. A 

3.3 pm long-pass filter was attached to the InSb detector to block any pump light that 

passed through the cavity. At 19 K, lasing was observed with a threshold pump energy of 

1.2 pl. We note that the observed threshold energy is lower than the calculated value. If 

the measured threshold value is used to back-calculate the passive loss, we determine a 

passive loss of 0.012. This value is not extreme considering that scatter loss could be the 

primary passive loss mechanism if Fresnel losses are canceled by near-parallel polish of 

the crystal surfaces. 
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F1 

Figure 7.3. Schematic of the Fe2+:ZnSe laser system: PL, Er:YAG pump laser operating 
at 2.698 pm; VA, variable attenuator wheel; JM, Molectron J3-09 joulemeter; L,, +20 cm 
CaFz lens; M1,20 cm radius of curvature CaF2 mirrors with T = 82% at 2.698 pm and T 
= 0.3% at 3.98 pm; ARW, anti-reflection coated CaF2 window (at both the pump and the 
laser wavelengths); CC, 20-300 K cryogenic vacuum chamkc F1,3.3 pm long-wave 
pass filter, D, E. G. & G. Judson liquid nitrogen cooled InSb detector. 

7.4.2 Temperature tuning 

The wavelength and output energy of the Fe2+:ZnSe laser was observed to change 

with temperature. The lasing wavelength was measured at 'several temperatures using a 

1/3 meter, 150 groovdmm CVI Instruments Digikrom 240 computer controlled 

monochromator, a Labview data acquisition program, and a liquid nitrogen cooled InSb 

detector. This equipment was placed in the position of the detector on the right side of 

Fig. 7.3. The output energy was measured at several temperatures using the same basic 

experimental setup as shown in Fig. 7.3 except that the InSb detector was replaced by a 

Molectron 53-09 joulemeter. The incident energy from the Er:YAG pump laser was kept 

constant and the output energy from the Fe2+:ZnSe laser was measured while the 

temperature of the crystal was varied in discrete steps. 

Fig. 7.4 shows a comparison between the spontaneous emission spectra and the laser 

emission for Fe2+:ZnSe at three approximately equivalent temperatures. The Fe2+:ZnSe 

laser's emission at 18 K was centered at 3.98 pn with a bandwidth of 0.007 pm. The 
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increased laser linewidth at 130 K shown in Fig. 7.4 indicates that the Fe2+:ZnSe laser 

was operating in multiple longitudinal modes [3]. The shift in output of the Fe2+:ZnSe 

laser to longer wavelengths as the temperature of the crystal increased is an effect 

resulting from higher lying spin-orbit and vibrational states of 5E being thermally 

populated at higher temperatures causing increased losses at the shorter wavelengths. 

Fig. 7.5 shows the output wavelength for the Fe2+:ZnSe laser at 5 different temperatures, 

which varied from 3.98 pm at 18 K to 4.54 ~UII at 180 K. The Fe2+:ZnSe laser is thus 

temperature tunable from at least 3.98 to 4.54 pm. 

3500 4000 4500 5000 
Wavelength (nm) 

Figure 7.4. Spontaneous emission spectra at 34 K, 70 K, and 152 K and laser emission at 
18 K, 75 K, and 130 K for Fe2+:ZnSe. 

The Fe2+:ZnSe laser produced its highest output energy at' 150 K: 48 p long pulses 

with a maximum energy per pulse of 7.8 pJ for an incident pump energy of 108.2 pJ. The 

low observed level of output energy between approximately 40 K and 90 K as shown in 

Fig. 7.5 is believed to be due to the strong atmospheric C02 absorption near 4.23 pm 
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Figure 7.5. Variation of the h2+:ZnSt laser wavelength and output energy with crystal 
temperature. The lines through the data are only to aid the eye. 

which would significantly attenuate the Fe2+:ZnSe laser's output. No effort was made to 

purge the COz in the space of the laser and detector. Another factor contributing to the 

relatively low output energy below 100 K is the relatively low absorption at the pump 

wavelength. Therefore the increase in output energy of the Fe2+:ZnSe laser from 

approximately 100 K to 150 K can be attributed in part to the increasing absorption at the 

pump wavelength as shown in Fig. 6.6. 

The variation in output energy and wavelength with temperature measured here for 

the Fe2+:ZnSe laser is very similar to the temperature behavior that has been observed for 

the Alexandrite laser [4]. The Fe2+:ZnSe laser is therefore a vibronic laser [5] .  Vibronic 

lasers have lasing transitions that emit both photons and phonons. The amount of energy 

emitted as phonons can be varied continuously, for instance through a change in 

temperature, and therefore the energy (wavelength) of the photons also varies 
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continuously. The result is broad wavelength tunability in the laser output @e. as shown 

in Fig. 7.5). 

7.4.3 Laser slope efficiencies 

Laser slope efficiencies were determined at several temperatures for an output 

coupling of 0.6% as shown in Fig. 7.6. The slope efficiency data was collected with the 
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Figure 7.6. Fe2+:ZnSe laser output energy vs. absorbed 2.698 pm pump energy at 19 K, 
- &  70 K, 150 K, and 170 K for 100 Hz operation. 

same basic experimental setup as in Fig. 7.3, except that the InSb detector was replaced 

by a Molectron J3-09 joulemeter. The output energy of the Fe2+:ZnSe laser was 

measured as a function of the incident pump energy at each temperature. The incident 

pump energy was varied using the attenuator wheel shown in Fig. 7.3. For a 0.6% output 

coupling, Table 7.1 lists the slope efficiencies and laser thresholds determined at four 

different temperatures for the Fe2+:ZnSe laser. The slope efficiencies were determined 
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Temperature 
19 K 
70 K 
150 K 

Table 7.1. Measured slope efficiencies and laser thresholds for the Fe2+:ZnSe 
laser at different crystal temperatures. 

w 

Slope Efficiency Laser Threshold 
32% 1.2 pJ 
1.7% 3.0 pJ 
8.2% 245 Ll 

I 
~ 

170 K I 5.2% I 463 pJ I 

from the slope of a linear fit to the data in Fig. 7.6 and the threshold values were the x- 

intempts of the fitted lines. The slope efficiency is proportional to the inverse of the 

round-trip cavity loss [6]. Therefore the decrease in slope efficiency from 19 K to 70 K 

is in part due to the C02 absorption loss mentioned earlier and the decrease from 150 K 

to 170 K is in part due to the increased thermally-activated nonradiative losses. Even 

though rather low slope efficiencies were obtained, improvement can be made by 

optimizing the cavity output coupling and employing an .anti-reflection coating on the 

crystal. The increase in the threshold values with temperature is partially due to the 

increase in overlap between the absorption and emission wavelengths causing the lasing 

wavelength to increase which decreases the emission cross-section (Fig. 7.1). Another 

contributing factor to the increase in threshold is that the luminescence lifetime over 

these temperatures is primarily decreasing which by Eqn. (7.1) increases the threshold. 

7.5 Summary 

In summary, lasing action has been demonstrated for the first time in Fe2+:ZnSe, 

thereby verifying Fe2' as a tunable mid-infrared laser ion. The Fe2+:ZnSe laser produced 

a maximum output energy of 7.8 @/pulse at 150 K for a pump pulse energy of 108 pJ. 

The Fe2+:ZnSe laser tuned with temperature from 3.98 pm to 4.54 pm. The Fe2+:ZnSe 

laser had low laser thresholds (-1 - 50 pJ) and slope efficiencies between 2% and 10%. 
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Improvement in the slope efficiencies can be afforded by optimizing the cavity output 

coupling and improving the crystal quality. 
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Chapter 8 

Summary 

This dissertation presented the results from an exploratory study to identify and 

characterize new crystalline materials for frequency conversion of near-infrared 

wavelengths and as gain media for tunable mid-infrared solid-state lasers. 

In the first four chapters, the COB family of nonlinear crystals (i.e. L a c a O ( ~ 0 ~ ) ~  

(LaCOB), GdCa4O(BO3)3 (Gd,COB), YCa40@03)3 (YCOB), and 

G ~ o . ~ ~ Y o . ~ u C ~ ~ O ( B O ~ ) ~  (Gd,YCOB)) were investigated for potential use in frequency 

conversion of 1 pm lasers. In Chapter 2, the fundamental concepts of nonlinear optics 

used in Chapters 3 - 5 were discussed. Chapter 3 reported the results from the study of 

second harmonic generation (SHG) in the COB family of crystals. Type I second 

harmonic generation (SHG) at 1064 nm was characterized in GdCOB, YCOB, 

Gd,YCOB, and the newest member to this family LaCOB. A of 0.52 f 0.05 pmN 

and an angular sensitivity of 1224 f 184 (cm-rad)-' were determined for LaCOB. 

GdCOB and YCOB were found to have effective nonlinear coupling coefficients (&E) of 

0.78 f 0.06 and 1.12 f 0.07 pmN, respectively and angular sensitivities of 2704 f 156 

and 4548 k 277 (cm-rad)-', respectively. The d12 and d32 coefficients of the nonlinear 

optical tensor for LaCOB, GdCOB, and YCOB were determined to be identical within 

the experimental uncertainty between the three crystals and have absolute values of 10.26 

k 0.041 and 11.69 k 0.171 pmN, respectively. The effective coupling coefficient for type II 

noncritically phasematched (NCPM) doubling at 1064 nm in G&.275Y0.7~CaO(BO3)3 

was measured to be 0.37 f 0.04 pmN. 

From phasematching angle measurements for type I SHG at 1064 and 1047 nm in 
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LaCOB, it is predicted that LaCOB has a type I NCPM SHG wavelength of 1042 k 1.5 

nm. LaCOB, GdCOB and YCOB were observed to have very similar thermal 

sensitivities for type I SHG at 1064 nm. The thermal sensitivity of type I SHG at 1064 

nm in LCOB is estimated to be less than 0.10 (cm-OC)-' (i.e. 10 times less than t y p  

LiB305). Due to its low angular and thermal sensitivities for doubling in the 1 p range, 

LaCOB has strong potential for use as an external and intracavity frequency doubler. 

The work in Chapter 3 was aimed at finding new crystals with type I NCPM SHG 

wavelengths near 1064 nm. LaCOB was predicted to have a type I NCPM SHG 

wavelength of 1042 f 1.5 nm. It was also determined that the d32 coupling coefficient 

has a relatively large magnitude of 1.69 pmN and so the COB crystals were further 

characterized in Chapters 4 and 5 for two applications based on this coefficient. 

In Chapter 4, the COB crystals were evaluated for use in a noncritically 

phasematched optical parametric oscillator (OPO) in the 2 pn range. Experiments were 

conducted to measure the type II NCPM SHG wavelength down the x dielectric axis of 

the COB crystals in order to determine the degenerate oscillation wavelength for a type II 

NCPM OPO. To accomplish this, a LiNba OPO was constructed a tunable pump 

source and type 11 phasematched SHG was observed down the x dielectric axis in YCOB, 

GdCOB, and LaCOB as a function of the pump wavelength. Efforts to determine the 

exact (within 1 nm) non-critically phasematched SHG wavelength down the x dielectric 

axis for the COB crystals were unsuccessful. However, our best results indicate that the 

noncritically phasematched wavelength was near 1725 f 50 nm. Several experimental 

improvements are suggested to determine this wavelength to within 1 nm. 

Chapter 5 presented the measurements of the effective linear electro-optic coefficients 
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(r,R) along dielectric directions in YCOB for two longitudinal and four transverse 

configurations. For YCOB, a maximum rem of 10.7 f 1.0 pmN for the longitudinal 

configurations and a maximum rem of 10.8 1 f 1.46 pmN for the transverse configurations 

was determined. Therefore in a longitudinal configuration, the corresponding half-wave 

voltage at 1064 nm would be 99 kV. This may be put in perspective by comparison to 

the commonly utilized electro-optic crystal BaB204 @BO). BBO has a half-wave 

voltage at 1064 nm of 48 kV. Alternatively, in a transverse configuration, a YCOB 

crystal with a 5: 1 aspect ratio would have a half-wave voltage at 1W nm of 19.6 kV. 

One potential electro-optic use that was identified for YCOB was a multiple-plate 

longitudinal Pockels cell. The advantage of using multiple plates is that the required 

half-wave voItage could be much less than 99 kV. A potential transverse electro-optic 

application for YCOB would be to use a pair of identical YCOB crystals each with a 5:l 

(L:d) aspect ratio separated by a 90" rotator. This thermally compensated device would 

have a half-wave voltage 4 0  kV. Therefore, the most probable electro-optic application 

for YCOB is in a large aperture 1 pm Q-switch. 

The second part of this dissertation (Chapters 6 and 7) was the evaluation of 

Fe2+:ZnSe as a widely tunable mid-infrared laser material. In Chapter 6, a spectroscopic 

study of Fe2+:ZnSe was conducted in the 3 - 5 pm range. Fe2+:ZnSe was found to have a 

broad absorption band from 2650 to 3900 nm and a broad emission band from 3900 to 

4600 nm at a temperature of 34 K. Because of the strong coupling to the vibrational 

modes of the ZnSe lattice, Fe2+:ZnSe was not observed to luminesce at temperatures 

above 225 K. However, because of the coupling to the lattice, broad vibrational 

sidebands appear in the spectra which allow Fe*+:ZnSe to have wide tunability (i.e. a 
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18 2 vibronic laser material). Absorption cross-sections of -1.2 x 10- cm and emission 

cross-sections of -1.6 x cm2 for temperatures below 220 K were experimentally 

determined. The Iuminescence lifetime was found to be very dependent on temperature 

and ranged from 5 to 110 ps for temperatures below 220 K. After accounting for 

radiation trapping, we estimated the radiative lifetime for Fe2+:ZnSe to be 49 p for an Fe . 

concentration of -loL9 atoms/cm3. A configurational coordinate diagram and a detailed 

energy level diagram were constructed for the 5E and 5T2 states in Fe2+:ZnSe based on the 

experimentally determined spectroscopic results. 

In Chapter 7, lasing action was demonstrated for the first time in Fe2+:ZnSe for 

temperatures below 200 K. The Fe2+:ZnSe laser produced 48 p long pulses, and at 150 

K, had a maximum output energy of 7.8 pJ/pulse for an absorbed pump energy of 108 pJ. 

The Fe2+:ZnSe laser was tuned with temperature from 3,98 pm (20 K) to 4.54 pm (180 

K). The Fe2+:ZnSe laser had very low laser thresholds between 1 - 50 pJ and slope 

efficiencies between 2 and 10%. 

In conclusion: the COB family of nonlinear crystals have unique potential for 

frequency conversion of large aperture high average power lasers, LaCOB has especially 

strong potential for external and intracavity frequency doubling of NdYLF and 

Yb3+:Sr5(P0.&F (Yb:S-FAP) lasers, YCOB is a promising material for use in large 

aperture, high-average power 1 pm Q-switches, and Fe2+:ZnSe can be utilized as a widely 

tunable 3 - 5 pm laser material with a tuning range of over 500 nm. 

It is the hope of the author that the study of the COB crystals presented in this 

dissertation provides motivation for future work that will continue the exploration of new 

applications for these crystals. One such application for the COB crystals may be as an 
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integrated self-doubled, Q-switched gain medium. It is also the hope of the author that 

the study of Fe2+:ZnSe presented will inspire other researchers to pursue other transition 

metal-host combinations that will offer new emission wavelengths combined with wide 

tunability. 
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